2018 H2 Mathematics Paper 2 Question 7

Probability

Answers

1ab+ab{1-a-b+ab}
1ac{1-a-c}
Maximum P(AB)=13{\textrm{P}\left(A \cap B\right) = \frac{1}{3}}
Minimum P(AB)=215{\textrm{P}\left(A \cap B\right) = \frac{2}{15}}

Full solutions

(i)

Since A{A} and B{B} are independent,
P(AB)=P(A)P(B)\textrm{P}\left(A \cap B\right) = \textrm{P}\left(A\right)\cdot\textrm{P}\left(B\right)
P(AB)=1P(AB)=1(P(A)+P(B)P(AB))=1(a+bab)=1ab+ab  =1ab(1a)=(1a)(1b)=P(A)P(B)\begin{align*} & \textrm{P}\left(A' \cap B'\right) \\ &= 1 - \textrm{P}\left(A \cup B\right) \\ &= 1 - \Big( \textrm{P}\left(A\right) + \textrm{P}\left(B\right) - \textrm{P}\left(A \cap B\right) \Big) \\ &= 1 - (a+b-ab) \\ &= 1- a - b + ab \; \blacksquare \\ &= 1-a - b (1-a) \\ &= (1-a)(1-b) \\ &= \textrm{P}\left(A'\right) \cdot \textrm{P}\left(B'\right) \end{align*}
Since
P(AB)=P(A)P(B),\textrm{P}\left(A' \cap B'\right) = \textrm{P}\left(A'\right) \cdot \textrm{P}\left(B'\right),
A{A'} and B{B'} are independent {\blacksquare}

(ii)

Since A{A} and B{B} are mutually exclusive,
P(AC)=0\textrm{P}\left(A \cap C\right) = 0
P(AC)=1P(AC)=1(P(A)+P(C)P(AC))=1(a+c)=1ac  \begin{align*} & \textrm{P}\left(A' \cap C'\right) \\ &= 1 - \textrm{P}\left(A \cup C\right) \\ &= 1 - \Big( \textrm{P}\left(A\right) + \textrm{P}\left(C\right) - \textrm{P}\left(A \cap C\right) \Big) \\ &= 1 - (a+c) \\ &= 1- a - c \; \blacksquare \\ \end{align*}
If A{A'} and C{C'} are also mutually exclusive,
P(AC)=01ac=0a+c=1\begin{align*} \textrm{P}\left(A' \cap C'\right) &= 0 \\ 1- a - c &= 0 \\ a + c &= 1 \end{align*}
Hence the regions A{A} and C{C} make up the universal set in our Venn diagram

(iii)

From the Venn diagram, since all probabilities are between 0{0} and 1,{1,}
35b150b13\begin{align*} \frac{3}{5}b - \frac{1}{5} &\geq 0 \\ b &\geq \frac{1}{3} \end{align*}
1235b0b56\begin{align*} \frac{1}{2} - \frac{3}{5}b &\geq 0 \\ b &\leq \frac{5}{6} \end{align*}
P(AB)=25b\textrm{P}\left(A \cap B\right) = \frac{2}{5}b
13b56215P(AB)13\begin{gather*} \frac{1}{3} \leq b \leq \frac{5}{6} \\ \frac{2}{15} \leq \textrm{P}\left(A \cap B\right) \leq \frac{1}{3} \end{gather*}
Maximum P(AB)=13  Minimum P(AB)=215  \begin{align*} & \textrm{Maximum } \textrm{P}\left(A \cap B\right) \\ &\quad= \frac{1}{3} \; \blacksquare \\ & \textrm{Minimum } \textrm{P}\left(A \cap B\right) \\ &\quad= \frac{2}{15} \; \blacksquare \end{align*}