Math Repository
about
topic
al
year
ly
Yearly
2018
P1 Q6
Topical
Vectors I
18 P1 Q6
2018 H2 Mathematics Paper 1 Question 6
Vectors I: Basics, Dot and Cross Products
Answers
(ii)
λ
=
±
2
31
{\lambda = \pm 2 \sqrt{31}}
λ
=
±
2
31
Full solutions
(i)
a
×
3
b
=
2
a
×
c
a
×
3
b
−
2
a
×
c
=
0
a
×
(
3
b
−
2
c
)
=
0
\begin{gather*} \mathbf{a} \times 3 \mathbf{b} = 2 \mathbf{a} \times \mathbf{c} \\ \mathbf{a} \times 3 \mathbf{b} - 2 \mathbf{a} \times \mathbf{c} = 0 \\ \mathbf{a} \times \left( 3\mathbf{b}-2\mathbf{c}\right) = 0 \end{gather*}
a
×
3
b
=
2
a
×
c
a
×
3
b
−
2
a
×
c
=
0
a
×
(
3
b
−
2
c
)
=
0
Hence
a
{\mathbf{a}}
a
and
3
b
−
2
c
{3\mathbf{b}-2\mathbf{c}}
3
b
−
2
c
are parallel (or one/both are
0
{\mathbf{0}}
0
)
∴
3
b
−
2
c
=
λ
a
■
\therefore 3\mathbf{b}-2\mathbf{c} = \lambda \mathbf{a} \; \blacksquare
∴
3
b
−
2
c
=
λ
a
■
(ii)
∣
a
∣
=
∣
c
∣
=
1
{|\mathbf{a}|=|\mathbf{c}|=1}
∣
a
∣
=
∣
c
∣
=
1
and
∣
b
∣
=
4
{|\mathbf{b}|=4}
∣
b
∣
=
4
From (i), taking the dot product with itself,
(
3
b
−
2
c
)
⋅
(
3
b
−
2
c
)
=
(
λ
a
)
⋅
(
λ
a
)
9
b
⋅
b
−
6
c
⋅
b
−
6
b
⋅
c
+
4
c
⋅
c
=
λ
2
a
⋅
a
\begin{gather*} (3\mathbf{b}-2\mathbf{c})\cdot(3\mathbf{b}-2\mathbf{c}) = (\lambda \mathbf{a})\cdot(\lambda \mathbf{a}) \\ 9\mathbf{b}\cdot\mathbf{b}-6\mathbf{c}\cdot\mathbf{b}-6\mathbf{b}\cdot\mathbf{c}+4\mathbf{c}\cdot\mathbf{c} = \lambda^2 \mathbf{a}\cdot\mathbf{a} \\ \end{gather*}
(
3
b
−
2
c
)
⋅
(
3
b
−
2
c
)
=
(
λ
a
)
⋅
(
λ
a
)
9
b
⋅
b
−
6
c
⋅
b
−
6
b
⋅
c
+
4
c
⋅
c
=
λ
2
a
⋅
a
λ
2
∣
a
∣
2
=
9
∣
b
∣
2
−
12
b
⋅
c
+
4
∣
c
∣
2
λ
2
(
1
)
2
=
9
(
4
)
2
−
12
∣
b
∣
∣
c
∣
cos
θ
+
4
(
1
)
2
λ
2
=
148
−
12
(
4
)
(
1
)
cos
6
0
∘
=
124
λ
=
±
2
31
■
\begin{align*} \lambda^2 \left|\mathbf{a}\right|^2 &= 9\left|\mathbf{b}\right|^2 - 12\mathbf{b}\cdot\mathbf{c} + 4\left|\mathbf{c}\right|^2 \\ \lambda^2 (1)^2 &= 9(4)^2 - 12 \left|\mathbf{b}\right|\left|\mathbf{c}\right|\cos\theta + 4(1)^2 \\ \lambda^2 &= 148 - 12(4)(1)\cos 60^\circ \\ &= 124 \\ \lambda &= \pm 2 \sqrt{31} \; \blacksquare \end{align*}
λ
2
∣
a
∣
2
λ
2
(
1
)
2
λ
2
λ
=
9
∣
b
∣
2
−
12
b
⋅
c
+
4
∣
c
∣
2
=
9
(
4
)
2
−
12
∣
b
∣
∣
c
∣
cos
θ
+
4
(
1
)
2
=
148
−
12
(
4
)
(
1
)
cos
6
0
∘
=
124
=
±
2
31
■
Back to top ▲