2018 H2 Mathematics Paper 2 Question 1

Integration Techniques

Answers

3(29x+4)32+45{3 \left( \frac{2}{9} x + 4 \right)^{\frac{3}{2}} + 45}
(54,237){(54, 237)}

Full solutions

(i)

dydx=(13y15)13(13y15)13dydx=1\begin{gather*} \frac{\mathrm{d}y}{\mathrm{d}x} = \left( \frac{1}{3} y - 15 \right)^{\frac{1}{3}} \\ \left( \frac{1}{3} y - 15 \right)^{- \frac{1}{3}} \frac{\mathrm{d}y}{\mathrm{d}x} = 1 \end{gather*}
(13y15)13  dy=1  dx(13y15)2323(13)=x+C92(13y15)23=x+C(13y15)23=29x+C\begin{gather*} \int \left( \frac{1}{3} y - 15 \right)^{- \frac{1}{3}} \; \mathrm{d}y = \int 1 \; \mathrm{d}x \\ \frac{\left( \frac{1}{3} y - 15 \right)^{\frac{2}{3}}}{\frac{2}{3}\left( \frac{1}{3} \right)} = x + C \\ \frac{9}{2} \left(\frac{1}{3} y - 15\right)^{\frac{2}{3}} = x + C' \\ \left( \frac{1}{3} y - 15 \right)^{\frac{2}{3}} = \frac{2}{9}x + C \end{gather*}
When x=0,y=69{x=0, y=69}
0+C=(13(69)15)23C=4\begin{align*} 0 + C &= \left( \frac{1}{3}\left( 69 \right) - 15 \right)^{\frac{2}{3}} \\ C &= 4 \end{align*}
13y15=(29x+4)3213y=(29x+4)32+15f(x)=3(29x+4)32+45  \begin{gather*} \frac{1}{3} y - 15 = \left( \frac{2}{9} x + 4 \right)^{\frac{3}{2}} \\ \frac{1}{3} y = \left( \frac{2}{9} x + 4 \right)^{\frac{3}{2}} + 15 \\ f(x) = 3 \left( \frac{2}{9} x + 4 \right)^{\frac{3}{2}} + 45 \; \blacksquare \end{gather*}

(ii)

When the gradient is 4,{4,}
(13y15)13=413y15=43y=237\begin{gather*} \left( \frac{1}{3} y - 15 \right)^{\frac{1}{3}} = 4 \\ \frac{1}{3} y - 15 = 4^3 \\ y = 237 \end{gather*}
29x+4=(13(237)15)2329x=164x=54\begin{align*} \frac{2}{9} x + 4 &= \left( \frac{1}{3} (237) - 15 \right)^{\frac{2}{3}} \\ \frac{2}{9}x &= 16 - 4 \\ x &= 54 \end{align*}
Coordinates of the point on the curve where the gradient is 4:{4:}
(54,237)  (54, 237) \; \blacksquare