2018 H2 Mathematics Paper 1 Question 1

Integration Techniques

Answers

dydx=1x2lnxx2{\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{x^2} - \frac{\ln x}{x^2}}
12e{1 - \frac{2}{\mathrm{e}}}

Full solutions

(i)

dydx=1x2lnxx2  \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{x^2} - \frac{\ln x}{x^2} \; \blacksquare

(ii)

dydx=1x2lnxx2y=(1x2lnxx2)  dx=1x2  dxlnxx2  dx=1xlnxx2  dxlnxx2  dx=1xy+Clnxx2  dx=1xlnxx+C\begin{align*} \frac{\mathrm{d}y}{\mathrm{d}x} &= \frac{1}{x^2} - \frac{\ln x}{x^2} \\ y &= \int \left( \frac{1}{x^2} - \frac{\ln x}{x^2} \right) \; \mathrm{d}x \\ &= \int \frac{1}{x^2} \; \mathrm{d}x - \int \frac{\ln x}{x^2} \; \mathrm{d}x \\ &= - \frac{1}{x} - \int \frac{\ln x}{x^2} \; \mathrm{d}x \\ \int \frac{\ln x}{x^2} \; \mathrm{d}x &= - \frac{1}{x} - y + C \\ \int \frac{\ln x}{x^2} \; \mathrm{d}x &= - \frac{1}{x} - \frac{\ln x}{x} + C \\ \end{align*}
1elnxx2  dx=[1xlnxx]1e=1elnee+10=12e  \begin{align*} & \int_1^\mathrm{e} \frac{\ln x}{x^2} \; \mathrm{d}x \\ &= \left[ - \frac{1}{x} - \frac{\ln x}{x} \right]_1^\mathrm{e} \\ &= -\frac{1}{\mathrm{e}} - \frac{\ln \mathrm{e}}{\mathrm{e}} + 1 - 0 \\ &= 1 - \frac{2}{\mathrm{e}} \; \blacksquare \end{align*}