2018 H2 Mathematics Paper 2 Question 4

Maclaurin Series

Answers

2x243x46445x6+{- 2 x^2 - \frac{4}{3} x^4 - \frac{64}{45} x^6 + \ldots}
The expansion is not valid for x=π4{x=\frac{\pi}{4}}
1.0644{-1.0644}
1.0670{-1.0670}

Full solutions

(i)

ln(cos2x)=ln(12x2+23x4445x6+)=(2x2+23x4445x6)=((2x2+23x4445x6)22=(+(2x2+23x4445x6)33+=2x2+23x4445x64x483x628x63+=2x243x46445x6+  \begin{align*} & \ln (\cos 2x) \\ & = \ln \left( 1 - 2 x^2 + \frac{2}{3} x^4 - \frac{4}{45} x^6 + \ldots \right) \\ & = \left( - 2 x^2 + \frac{2}{3} x^4 - \frac{4}{45} x^6 \right) \\ & \phantom{= \Big(-} - \frac{\left( - 2 x^2 + \frac{2}{3} x^4 - \frac{4}{45} x^6 \right)^2}{2} \\ & \phantom{= \Big(- -} + \frac{\left( - 2 x^2 + \frac{2}{3} x^4 - \frac{4}{45} x^6 \right)^3}{3} + \ldots \\ & = - 2 x^2 + \frac{2}{3} x^4 - \frac{4}{45} x^6 - \frac{4x^4 -\frac{8}{3}x^6}{2} - \frac{8x^6}{3} + \ldots \\ &= - 2 x^2 - \frac{4}{3} x^4 - \frac{64}{45} x^6 + \ldots \; \blacksquare \end{align*}
Since lnX{\ln X} is undefined for X=0{X=0}, the expansion is not valid if
cos2x=02x=π2x=π4  \begin{align*} \cos 2x &= 0 \\ 2x &= \frac{\pi}{2} \\ x &= \frac{\pi}{4} \; \blacksquare \end{align*}

(ii)

00.5ln(cos2x)x2  dx00.52x243x46445x6x2  dx=00.5243x26445x4  dx=[2x49x364225x5]00.51.0644 (4 dp)  \begin{align*} & \int_0^{0.5} \frac{\ln(\cos 2x)}{x^2} \; \mathrm{d}x \\ &\approx \int_0^{0.5} \frac{- 2 x^2 - \frac{4}{3} x^4 - \frac{64}{45} x^6}{x^2} \; \mathrm{d}x \\ &= \int_0^{0.5} - 2 - \frac{4}{3} x^2 - \frac{64}{45} x^4 \; \mathrm{d}x \\ &= \left[ - 2 x - \frac{4}{9} x^3 - \frac{64}{225} x^5 \right]_0^{0.5} \\ &\approx -1.0644 \textrm{ (4 dp)} \; \blacksquare \end{align*}

(iii)

Using a GC,
00.5ln(cos2x)x2  dx1.0670 (4 dp)  \begin{gather*} \int_0^{0.5} \frac{\ln(\cos 2x)}{x^2} \; \mathrm{d}x \\ \approx -1.0670 \textrm{ (4 dp)} \; \blacksquare \end{gather*}