2018 H2 Mathematics Paper 2 Question 10

The Normal Distribution

Answers

0.605{0.605}
0.773{0.773}
0.126{0.126}
137{137}
0.163{0.163}

Full solutions

(i)

(ii)

Let X{X} denote the mass of a randomly selected bulb
XN(50,2.25)X \sim \textrm{N}( 50, 2.25 )
P(X<50.4)=0.605 (3 sf)  \begin{align*} & \textrm{P}(X < 50.4) \\ &= 0.605 \textrm{ (3 sf)} \; \blacksquare \end{align*}

(iii)

Y1+Y2++Y4N(4×75,4×22)Y1+Y2++Y4N(300,16)\begin{align*} Y_1 + Y_2 + \ldots + Y_4 &\sim \textrm{N}(4 \times 75, 4 \times 2^2) \\ Y_1 + Y_2 + \ldots + Y_{4} &\sim \textrm{N}( 300, 16 ) \end{align*}
P(Y1++Y4>297)=0.773 (3 sf)  \begin{align*} & \textrm{P}(Y_1 + \ldots + Y_4 > 297) \\ &= 0.773 \textrm{ (3 sf)} \; \blacksquare \end{align*}

(iv)

X+YN(50+75,2.25+22)X+YN(125,6.25)\begin{align*} X + Y &\sim \textrm{N}(50+75,2.25+2^2) \\ X + Y &\sim \textrm{N}( 125, 6.25 ) \end{align*}
P(124.9<X+Y<125.7)=0.126 (3 sf)  \begin{align*} & \textrm{P}(124.9 < X + Y < 125.7) \\ & = 0.126 \textrm{ (3 sf)} \; \blacksquare \end{align*}

(v)

Let W=0.3X{W = 0.3X} denote the mass of padding
WN(0.3×50,0.32×2.25)WN(15,0.2025)\begin{align*} W &\sim \textrm{N}(0.3 \times 50, 0.3^2 \times 2.25) \\ W &\sim \textrm{N}(15, 0.2025) \\ \end{align*}
Let T=X+Y+W{T=X+Y+W} denote the mass of a randomly chosen box
TN(50+75+15,2.25+22+0.2025)TN(140,6.4525)\begin{align*} T &\sim \textrm{N}(50+75+15, 2.25+2^2+0.2025) \\ T &\sim \textrm{N}( 140, 6.4525 ) \end{align*}
P(T>k)=0.9k=137 (3 sf)  \begin{gather*} \textrm{P}(T > k) = 0.9 \\ k = 137 \textrm{ (3 sf)} \; \blacksquare \end{gather*}

(vi)

T1+T2++T4N(4×140,4×6.4525)T1+T2++T4N(560,25.81)\begin{align*} T_1 + T_2 + \ldots + T_4 &\sim \textrm{N}(4\times 140, 4\times 6.4525) \\ T_1 + T_2 + \ldots + T_{4} &\sim \textrm{N}( 560, 25.81 ) \end{align*}
P(T1++T4>565)=0.163 (3 sf)  \begin{align*} & \textrm{P}(T_1 + \ldots + T_4 > 565) \\ & = 0.163 \textrm{ (3 sf)} \; \blacksquare \end{align*}