2018 H2 Mathematics Paper 2 Question 8

Discrete Random Variables (DRVs)

Answers

s{s} 6{6} 7{7} 8{8} 9{9} 10{10}
P(S=s){\mathrm{P}(S=s)} 2(n+5)(n+4){\frac{2}{(n+5)(n+4)}} 12(n+5)(n+4){\frac{12}{(n+5)(n+4)}} 4n+6(n+5)(n+4){\frac{4n+6}{(n+5)(n+4)}} 6n(n+5)(n+4){\frac{6n}{(n+5)(n+4)}} n(n1)(n+5)(n+4){\frac{n(n-1)}{(n+5)(n+4)}}
P(S=10)=0{\mathrm{P}(S=10)=0}
This is because if there is only 1{1} ball numbered 5,{5, } then it is impossible to get S=10{S=10} when taking two balls without replacement
Var(S)=22n2+78n+36(n+5)2(n+4){\mathrm{Var}(S)=\frac{22 n^2 + 78 n + 36}{(n+5)^2(n+4)}}

Full solutions

(i)

P(S=6)=2n+5(1n+4)=2(n+5)(n+4)  P(S=7)=2n+5(3n+4)×2!=12(n+5)(n+4)  P(S=8)=3n+5(2n+4)+2n+5(nn+4)×2!=4n+6(n+5)(n+4)  P(S=9)=3n+5(nn+4)×2!=6n(n+5)(n+4)  P(S=10)=nn+5(n1n+4)=n(n1)(n+5)(n+4)  \begin{align*} \mathrm{P}(S=6) &= \frac{2}{n+5} \left( \frac{1}{n+4} \right) \\ &= \frac{2}{(n+5)(n+4)} \; \blacksquare \\ \mathrm{P}(S=7) &= \frac{2}{n+5} \left( \frac{3}{n+4} \right) \times 2! \\ &= \frac{12}{(n+5)(n+4)} \; \blacksquare \\ \mathrm{P}(S=8) &= \frac{3}{n+5} \left( \frac{2}{n+4} \right) + \frac{2}{n+5} \left( \frac{n}{n+4} \right)\times 2! \\ &= \frac{4n+6}{(n+5)(n+4)} \; \blacksquare \\ \mathrm{P}(S=9) &= \frac{3}{n+5} \left( \frac{n}{n+4} \right) \times 2! \\ &= \frac{6n}{(n+5)(n+4)} \; \blacksquare \\ \mathrm{P}(S=10) &= \frac{n}{n+5} \left( \frac{n-1}{n+4} \right) \\ &= \frac{n(n-1)}{(n+5)(n+4)} \; \blacksquare \\ \end{align*}
s{s} 6{6} 7{7} 8{8} 9{9} 10{10}
P(S=s){\mathrm{P}(S=s)} 2(n+5)(n+4){\frac{2}{(n+5)(n+4)}} 12(n+5)(n+4){\frac{12}{(n+5)(n+4)}} 4n+6(n+5)(n+4){\frac{4n+6}{(n+5)(n+4)}} 6n(n+5)(n+4){\frac{6n}{(n+5)(n+4)}} n(n1)(n+5)(n+4){\frac{n(n-1)}{(n+5)(n+4)}}

(ii)

P(S=10)=1(11)(1+5)(1+4)=0  \begin{align*} \mathrm{P}(S=10) &= \frac{1(1-1)}{(1+5)(1+4)} \\ &= 0 \; \blacksquare \end{align*}
This is because if there is only 1{1} ball numbered 5,{5, } then it is impossible to get S=10{S=10} when taking two balls without replacement

(iii)

E(S)=ssP(S=s)=12+84+8(4n+6)+54n+10n(n1)(n+5)(n+4)=10n2+76n+144(n+5)(n+4)=2(n+4)(5n+18)(n+5)(n+4)=10n+36n+5  \begin{align*} \mathrm{E}(S) &= \sum_s s \mathrm{P}(S=s) \\ &= \frac{12+84+8(4n+6)+54n+10n(n-1)}{(n+5)(n+4)} \\ &= \frac{10 n^2 + 76 n + 144}{(n+5)(n+4)} \\ &= \frac{2(n + 4)(5 n + 18)}{(n+5)(n+4)} \\ &= \frac{10 n + 36}{n+5} \; \blacksquare \end{align*}
E(S2)=ss2P(S=s)=72+588+64(4n+6)+486n+100n(n1)(n+5)(n+4)=100n2+642n+1044(n+5)(n+4)\begin{align*} \mathrm{E}(S^2) &= \sum_s s^2 \mathrm{P}(S=s) \\ &= \frac{72+588+64(4n+6)+486n+100n(n-1)}{(n+5)(n+4)} \\ &= \frac{100 n^2 + 642 n + 1044}{(n+5)(n+4)} \\ \end{align*}
Var(S)=E(S2)(E(S))2=100n2+642n+1044(n+5)(n+4)(10n+36)2(n+5)2=(100n2+642n+1044)(n+5)(10n+36)2(n+4)(n+5)2(n+4)=22n2+78n+36(n+5)2(n+4)  \begin{align*} & \mathrm{Var}(S) \\ &= \mathrm{E}(S^2) - \left(\mathrm{E}(S)\right)^2 \\ &= \frac{100 n^2 + 642 n + 1044}{(n+5)(n+4)} - \frac{(10 n + 36)^2}{(n+5)^2} \\ &= \frac{(100 n^2 + 642 n + 1044)(n+5)-(10 n + 36)^2(n+4)}{(n+5)^2(n+4)} \\ &= \frac{22 n^2 + 78 n + 36}{(n+5)^2(n+4)} \; \blacksquare \end{align*}