2008 H2 Mathematics Paper 1 Question 4

Differential Equations (DEs)

Answers

y=32ln(x2+1)+c{y = \frac{3}{2} \ln \left( x^2 + 1 \right) + c}
y=32ln(x2+1)+2{y = \frac{3}{2} \ln \left( x^2 + 1 \right) + 2}
The gradient of every solution curve approaches 0{0} as x±{x \to \pm \infty}
Graph of particular solution

Full solutions

(i)

dydx=3xx2+1y=322xx2+1  dx=32ln(x2+1)+c  \begin{align*} \frac{\mathrm{d}y}{\mathrm{d}x} &= \frac{3x}{x^2 + 1} \\ y &= \frac{3}{2} \int \frac{2x}{x^2 + 1} \; \mathrm{d}x \\ &= \frac{3}{2} \ln \left( x^2 + 1 \right) + c \; \blacksquare \end{align*}

(ii)

When x=0,{x=0, } y=2,{y = 2,}
2=32ln(02+1)+cc=2\begin{gather*} 2 = \frac{3}{2} \ln (0^2+1) + c \\ c = 2 \end{gather*}
Particular solution:
y=32ln(x2+1)+2  y = \frac{3}{2} \ln \left( x^2 + 1 \right) + 2 \; \blacksquare

(iii)

As x±,{x \to \pm \infty, }
dydx=3xx2+10\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{3x}{x^2 + 1} \to 0
Hence the gradient of every solution curve approaches 0{0} as x±  {x \to \pm \infty \; \blacksquare}

(iv)

Graph of particular solution