2013 H2 Mathematics Paper 1 Question 10

Differential Equations (DEs)

Answers

z=12(3Ae2x){z = \frac{1}{2} \left( 3 - A\mathrm{e}^{-2x} \right)}
y=12(3x+A2e2x)+C{y = \frac{1}{2} \left( 3x + \frac{A}{2}\mathrm{e}^{-2x} \right) + C}
d2ydx2=2dydx+3  {\frac{\mathrm{d}^{2}y}{\mathrm{d}x^{2}} = -2 \frac{\mathrm{d}y}{\mathrm{d}x} + 3 \;}
Out of syllabus

Full solutions

(i)

dzdx=32z132zdzdx=1132z  dz=1  dx\begin{gather*} \frac{\mathrm{d}z}{\mathrm{d}x} = 3 - 2 z \\ \frac{1}{3 - 2 z} \frac{\mathrm{d}z}{\mathrm{d}x} = 1 \\ \int \frac{1}{3 - 2 z} \; \mathrm{d}z = \int 1 \; \mathrm{d}x \\ \end{gather*}
Since z<32,{z<\frac{3}{2},}
12ln(32z)=x+cln(32z)=2x2c32z=e2xc32z=Ae2xz=12(3Ae2x)  \begin{gather*} - \frac{1}{2} \ln \left( 3 - 2 z\right) = x + c \\ \ln (3-2z) = -2x-2c \\ 3-2z = \mathrm{e}^{-2x-c} \\ 3-2z = A\mathrm{e}^{-2x} \\ z = \frac{1}{2} \left( 3 - A\mathrm{e}^{-2x} \right) \; \blacksquare \end{gather*}

(ii)

dydx=zdydx=12(3Ae2x)y=12(3xA2e2x)+Cy=12(3x+A2e2x)+C  \begin{gather*} \frac{\mathrm{d}y}{\mathrm{d}x} = z \\ \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{2} \left( 3 - A\mathrm{e}^{-2x} \right) \\ y = \frac{1}{2} \left( 3x - \frac{A}{-2}\mathrm{e}^{-2x} \right) + C \\ y = \frac{1}{2} \left( 3x + \frac{A}{2}\mathrm{e}^{-2x} \right) + C \; \blacksquare \end{gather*}

(iii)

dydx=12(3Ae2x)d2ydx2=12(2Ae2x)=Ae2x=(Ae2x)=(3Ae2x3)=(3Ae2x)+3=2dydx+3  \begin{align*} \frac{\mathrm{d}y}{\mathrm{d}x} &= \frac{1}{2} \left( 3 - A\mathrm{e}^{-2x} \right) \\ \frac{\mathrm{d}^{2}y}{\mathrm{d}x^{2}} &= \frac{1}{2} \left( 2A \mathrm{e}^{-2x} \right) \\ &= A \mathrm{e}^{-2x} \\ &= - \left(-A \mathrm{e}^{-2x} \right) \\ &= - \left(3-A \mathrm{e}^{-2x} - 3 \right) \\ &= - \left(3-A \mathrm{e}^{-2x} \right) + 3 \\ &= -2 \frac{\mathrm{d}y}{\mathrm{d}x} + 3 \; \blacksquare \end{align*}

(iv)

Out of syllabus