2011 H2 Mathematics Paper 1 Question 8

Differential Equations (DEs)

Answers

120ln10+v10v+c{\frac{1}{20} \ln \left| \frac{10 + v}{10 - v} \right| + c}
(iia)
t=12ln(10+v10v){t = \frac{1}{2}\ln \left( \frac{10+v}{10-v} \right)}
12ln3 s{\frac{1}{2} \ln 3 \textrm{ s}}
(iib)
7.62 m/s{7.62 \textrm{ m/s}}
(iic)
The speed of the stone approaches 10 m/s{10 \textrm{ m/s}} for large values of t{t}

Full solutions

(i)

1100v2  dv=12(10)ln10+v10v+c=120ln10+v10v+c  \begin{align*} & \int \frac{1}{100 - v^2} \; \mathrm{d}v \\ &= \frac{1}{2(10)} \ln \left| \frac{10+v}{10-v} \right| + c \\ &= \frac{1}{20} \ln \left| \frac{10 + v}{10 - v} \right| + c \; \blacksquare \end{align*}
(iia)
dvdt=100.1v2=0.1(100v2)\begin{align*} \frac{\mathrm{d}v}{\mathrm{d}t} &= 10 - 0.1v^2 \\ &= 0.1 (100-v^2) \\ \end{align*}
1100v2  dv=0.1  dt120ln10+v10v=0.1t+cln10+v10v=2t+20c10+v10v=e2t+20c10+v10v=±e20ce2t=Ae2t\begin{align*} \int \frac{1}{100 - v^2} \; \mathrm{d}v &= \int 0.1 \; \mathrm{d}t \\ \frac{1}{20} \ln \left| \frac{10 + v}{10 - v} \right| &= 0.1t + c \\ \ln \left| \frac{10+v}{10-v} \right| &= 2t + 20c \\ \left| \frac{10+v}{10-v} \right| &= \mathrm{e}^{2t + 20c} \\ \frac{10+v}{10-v} &= \pm \mathrm{e}^{20c} \mathrm{e}^{2t} \\ &= A \mathrm{e}^{2t} \\ \end{align*}
When t=0,{t=0, } v=0,{v = 0,}
10+0100=Ae2(0)A=1\begin{align*} \frac{10+0}{10-0} &= A \mathrm{e}^{2(0)} \\ A &= 1 \end{align*}
10+v10v=e2t2t=ln(10+v10v)t=12ln(10+v10v)  \begin{gather*} \frac{10+v}{10-v} = \mathrm{e}^{2t} \\ 2t = \ln \left( \frac{10+v}{10-v} \right) \\ t = \frac{1}{2}\ln \left( \frac{10+v}{10-v} \right) \; \blacksquare \end{gather*}
When v=5,{v = 5,}
t=12ln(10+5105)=12ln3 s  \begin{align*} t &= \frac{1}{2} \ln \left( \frac{10+5}{10-5} \right) \\ &= \frac{1}{2} \ln 3 \textrm{ s} \; \blacksquare \end{align*}
(iib)
10+v10v=e2t10+v=(10v)e2tv(1+e2t)=10e2t10\begin{gather*} \frac{10+v}{10-v} = \mathrm{e}^{2t} \\ 10+v = (10-v) \mathrm{e}^{2t} \\ v (1+\mathrm{e}^{2t}) = 10 \mathrm{e}^{2t} -10 \\ \end{gather*}
v=10e2t101+e2t=1010e2te2t+1\begin{align*} v &= \frac{10 \mathrm{e}^{2t} -10}{1+\mathrm{e}^{2t}} \\ &= \frac{10-10\mathrm{e}^{-2t}}{\mathrm{e}^{-2t}+1} \end{align*}
When t=1,{t=1,}
v=1010e2(1)e2(1)+1=1010e2e2+1=7.62 m/s (3 sf)  \begin{align*} v &= \frac{10-10\mathrm{e}^{-2(1)}}{\mathrm{e}^{-2(1)}+1} \\ &= \frac{10-10\mathrm{e}^{-2}}{\mathrm{e}^{-2}+1} \\ &= 7.62 \textrm{ m/s} \textrm{ (3 sf)} \; \blacksquare \end{align*}
(iic)
As t,{t \to \infty, } e2t0{\mathrm{e}^{-2t} \to 0}
v=1010e2te2t+110\begin{align*} v &= \frac{10-10\mathrm{e}^{-2t}}{\mathrm{e}^{-2t}+1} \\ &\to 10 \end{align*}
Hence the speed of the stone approaches 10 m/s{10 \textrm{ m/s}} for large values of t  {t \; \blacksquare}