2022 H2 Mathematics Paper 1 Question 12

Differential Equations (DEs)

Answers

dPdt=kP.{\frac{\mathrm{d}P}{\mathrm{d}t} = kP.}
P=50etln210.{P = 50 \mathop{\mathrm{e}^{\frac{t \ln 2}{10}}}.}
P=5009etln9410+1.{\displaystyle P = \frac{500}{9\mathrm{e}^{\frac{-t \ln \frac{9}{4}}{10}} + 1}.}
The population approaches 500{500} in the long run.
This model is an improvement as the first model predicts that the population of the species approaches {\infty} in the long run, which is not realistic. In the long run, we expect the population of the species to stabilise at a certain value, which is what this refined model predicts.

Full solutions

(a)

dPdt=kP  1PdPdt=k1P  dP=k  dtlnP=kt+cP=ekt+cP=Aekt\begin{align*} \frac{\mathrm{d}P}{\mathrm{d}t} &= kP \; \blacksquare \\ \frac{1}{P} \frac{\mathrm{d}P}{\mathrm{d}t} &= k \\ \int \frac{1}{P} \; \mathrm{d}P &= \int k \; \mathrm{d}t \\ \ln |P| &= kt + c \\ |P| &= \mathrm{e}^{kt + c} \\ P &= A\mathrm{e}^{kt} \end{align*}
When t=0,{t=0,} P=50{P=50}
50=Aek(0)A=50\begin{align*} 50 &= A \mathrm{e}^{k(0)} \\ A &= 50 \end{align*}
When t=10,{t=10,} P=100{P=100}
100=50ek(10)e10k=210k=ln2k=110ln2\begin{align*} 100 &= 50 \mathrm{e}^{k(10)} \\ \mathrm{e}^{10k} &= 2 \\ 10k &= \ln 2 \\ k &= \frac{1}{10} \ln 2 \end{align*}
P=50etln210  P = 50 \mathop{\mathrm{e}^{\frac{t \ln 2}{10}}} \; \blacksquare

(b)

1P(500P)dPdt=λ1P(500P)  dP=λdt15001P+1500P  dP=λt+clnPln500P=500λt+clnP500P=500λt+cP500P=Be500λt\begin{align*} \frac{1}{P(500-P)} \frac{\mathrm{d}P}{\mathrm{d}t} &= \lambda \\ \int \frac{1}{P(500-P)} \; \mathrm{d}P &= \int \lambda \mathrm{d}t \\ \frac{1}{500} \int \frac{1}{P} + \frac{1}{500-P} \; \mathrm{d}P &= \lambda t + c \\ \ln |P| - \ln |500-P| &= 500 \lambda t + c' \\ \ln \left| \frac{P}{500-P} \right| &= 500 \lambda t + c' \\ \frac{P}{500-P} &= B \mathrm{e}^{500 \lambda t} \end{align*}
When t=0,{t=0,} P=50{P=50}
5050050=Be500λ(0)B=19\begin{align*} \frac{50}{500-50} &= B \mathrm{e}^{500 \lambda(0)} \\ B &= \frac{1}{9} \end{align*}
When t=10,{t=10,} P=100{P=100}
100500100=19e500λ(10)e5000λ=945000λ=ln94500λ=110ln94\begin{align*} \frac{100}{500-100} &= \frac{1}{9} \mathrm{e}^{500 \lambda (10)} \\ \mathrm{e}^{5000 \lambda} &= \frac{9}{4} \\ 5000 \lambda &= \ln \frac{9}{4} \\ 500 \lambda &= \frac{1}{10} \ln \frac{9}{4} \end{align*}
P500P=19etln94109P=500etln9410Petln9410P(9+etln9410)=500etln9410\begin{gather*} \frac{P}{500-P} = \frac{1}{9} \mathrm{e}^{\frac{t \ln \frac{9}{4}}{10}} \\ 9P = 500 \mathrm{e}^{\frac{t \ln \frac{9}{4}}{10}} - P \mathrm{e}^{\frac{t \ln \frac{9}{4}}{10}} \\ P(9 + \mathrm{e}^{\frac{t \ln \frac{9}{4}}{10}}) = 500\mathrm{e}^{\frac{t \ln \frac{9}{4}}{10}} \end{gather*}
P=500etln94109+etln9410=5009etln9410+1  \begin{align*} P &= \frac{500\mathrm{e}^{\frac{t \ln \frac{9}{4}}{10}}}{9+\mathrm{e}^{\frac{t \ln \frac{9}{4}}{10}}} \\ &= \frac{500}{9\mathrm{e}^{\frac{-t \ln \frac{9}{4}}{10}} + 1} \; \blacksquare \end{align*}

(c)

As t,{t \to \infty,} etln94100{\mathrm{e}^{\frac{-t \ln \frac{9}{4}}{10}} \to 0} so P500.{P \to 500.}

Hence the population approaches 500{500} in the long run. {\blacksquare}

This model is an improvement as the first model predicts that the population of the species approaches {\infty} in the long run, which is not realistic. In the long run, we expect the population of the species to stabilise at a certain value, which is what this refined model predicts. {\blacksquare}

Question Commentary

This DE question is very similar to recent years (the last three, in fact!) so hopefully most students will be able to apply the techniques from their revision comfortably.

The integral for part (b) involves using either partial fractions (the technique shown in the solution above) or completing the square.