Math Repository
about
topic
al
year
ly
Yearly
2010
P1 Q7
Topical
DE
10 P1 Q7
2010 H2 Mathematics Paper 1 Question 7
Differential Equations (DEs)
Answers
10
ln
2
≈
6.93
min
{10 \ln 2 \approx 6.93 \textrm{ min}}
10
ln
2
≈
6.93
min
θ
{\theta}
θ
approaches
20
{20}
20
for large values of
t
{t }
t
Full solutions
d
θ
d
t
=
k
(
20
−
θ
)
\frac{\mathrm{d}\theta}{\mathrm{d}t} = k (20 - \theta)
d
t
d
θ
=
k
(
20
−
θ
)
When
θ
=
10
,
{\theta = 10, }
θ
=
10
,
d
θ
d
t
=
1
{\frac{\mathrm{d}\theta}{\mathrm{d}t}=1}
d
t
d
θ
=
1
1
=
k
(
20
−
10
)
k
=
1
10
\begin{align*} 1 &= k (20-10) \\ k &= \frac{1}{10} \end{align*}
1
k
=
k
(
20
−
10
)
=
10
1
∫
1
20
−
θ
d
θ
=
∫
1
10
d
t
\int \frac{1}{20 - \theta} \; \mathrm{d}\theta = \int \frac{1}{10} \; \mathrm{d}t
∫
20
−
θ
1
d
θ
=
∫
10
1
d
t
−
ln
∣
20
−
θ
∣
=
1
10
t
+
c
ln
∣
20
−
θ
∣
=
−
1
10
t
−
c
∣
20
−
θ
∣
=
e
−
1
10
t
−
c
=
e
−
1
10
t
⋅
e
−
c
20
−
θ
=
±
e
−
c
e
−
1
10
t
=
A
e
−
1
10
t
θ
=
20
−
A
e
−
1
10
t
\begin{align*} -\ln | 20 - \theta | &= \frac{1}{10}t + c \\ \ln | 20 - \theta | &= -\frac{1}{10}t - c \\ | 20 - \theta | &= \mathrm{e}^{-\frac{1}{10}t - c} \\ & = \mathrm{e}^{-\frac{1}{10}t} \cdot \mathrm{e}^{-c} \\ 20 - \theta &= \pm \mathrm{e}^{-c} \mathrm{e}^{-\frac{1}{10}t} \\ &= A \mathrm{e}^{-\frac{1}{10}t} \\ \theta &= 20 - A \mathrm{e}^{-\frac{1}{10}t} \\ \end{align*}
−
ln
∣20
−
θ
∣
ln
∣20
−
θ
∣
∣20
−
θ
∣
20
−
θ
θ
=
10
1
t
+
c
=
−
10
1
t
−
c
=
e
−
10
1
t
−
c
=
e
−
10
1
t
⋅
e
−
c
=
±
e
−
c
e
−
10
1
t
=
A
e
−
10
1
t
=
20
−
A
e
−
10
1
t
When
t
=
0
,
{t=0, }
t
=
0
,
θ
=
10
{\theta = 10}
θ
=
10
10
=
20
−
A
e
−
1
10
(
0
)
A
=
10
\begin{align*} 10 &= 20 - A \mathrm{e}^{-\frac{1}{10}(0)} \\ A &= 10 \end{align*}
10
A
=
20
−
A
e
−
10
1
(
0
)
=
10
θ
=
20
−
10
e
−
1
10
t
■
\theta = 20 - 10 \mathrm{e}^{-\frac{1}{10}t} \; \blacksquare
θ
=
20
−
10
e
−
10
1
t
■
When
θ
=
15
,
{\theta = 15,}
θ
=
15
,
15
=
20
−
10
e
−
1
10
t
10
e
−
1
10
t
=
5
e
−
1
10
t
=
1
2
−
1
10
t
=
ln
1
2
t
=
−
10
ln
1
2
=
10
ln
2
min
■
\begin{align*} 15 &= 20 - 10 \mathrm{e}^{-\frac{1}{10}t} \\ 10 \mathrm{e}^{-\frac{1}{10}t} &= 5 \\ \mathrm{e}^{-\frac{1}{10}t} &= \frac{1}{2} \\ -\frac{1}{10}t &= \ln \frac{1}{2} \\ t &= -10 \ln \frac{1}{2} \\ &= 10 \ln 2 \textrm{ min} \; \blacksquare \end{align*}
15
10
e
−
10
1
t
e
−
10
1
t
−
10
1
t
t
=
20
−
10
e
−
10
1
t
=
5
=
2
1
=
ln
2
1
=
−
10
ln
2
1
=
10
ln
2
min
■
As
t
→
∞
,
{t \to \infty, }
t
→
∞
,
e
−
1
10
t
→
0.
{\mathrm{e}^{-\frac{1}{10}t} \to 0.}
e
−
10
1
t
→
0.
Hence
θ
→
20
{\theta \to 20}
θ
→
20
θ
{\theta}
θ
approaches
20
{20}
20
for large values of
t
■
{t \; \blacksquare}
t
■
Graph of temperature against time
Back to top ▲