2012 H2 Mathematics Paper 2 Question 1

Differential Equations (DEs)

Answers

y=8x234x4+cx+d{y = 8 x^2 - \frac{3}{4} x^4+cx+d}
t=124ln(4+3u7(43u)){t = \frac{1}{24} \ln \left( \frac{4+3u}{7(4-3u)} \right) }

Full solutions

(a)

d2ydx2=169x2dydx=16x3x3+cy=8x234x4+cx+d  \begin{gather*} \frac{\mathrm{d}^{2}y}{\mathrm{d}x^{2}} = 16 - 9 x^2 \\ \frac{\mathrm{d}y}{\mathrm{d}x} = 16 x - 3 x^3 + c \\ y = 8 x^2 - \frac{3}{4} x^4 + cx + d \; \blacksquare \end{gather*}

(b)

dudt=169u21169u2  du=1  dt191169u2  du=1  dt1912(43)ln43+u43u=t+C124ln4+3u43u=t+Cln4+3u43u=24t+24C4+3u43u=e24t+24C\begin{gather*} \frac{\mathrm{d}u}{\mathrm{d}t} = 16 - 9 u^2 \\ \int \frac{1}{16 - 9 u^2} \; \mathrm{d}u = \int 1 \; \mathrm{d}t \\ \frac{1}{9} \int \frac{1}{\frac{16}{9} - u^2} \; \mathrm{d}u = \int 1 \; \mathrm{d}t \\ \frac{1}{9} \cdot \frac{1}{2\left(\frac{4}{3}\right)}\ln \left| \frac{\frac{4}{3}+u}{\frac{4}{3}-u} \right| = t + C \\ \frac{1}{24} \ln \left| \frac{4 + 3 u}{4 - 3 u} \right| = t + C \\ \ln \left| \frac{4+3u}{4-3u} \right| = 24t + 24C \\ \left| \frac{4+3u}{4-3u} \right| = \mathrm{e}^{24t + 24C} \\ \end{gather*}
4+3u43u=±e24Ce24t=Ae24t\begin{align*} \frac{4+3u}{4-3u} &= \pm \mathrm{e}^{24C} \mathrm{e}^{24t} \\ &= A \mathrm{e}^{24t} \end{align*}
When t=0,{t=0, } u=1{u=1}
4+3(1)43(1)=Ae24(0)A=7\begin{gather*} \frac{4+3(1)}{4-3(1)} = A \mathrm{e}^{24(0)} \\ A = 7 \end{gather*}
4+3u43u=7e24te24t=4+3u7(43u)24t=ln(4+3u7(43u))t=124ln(4+3u7(43u))  \begin{gather*} \frac{4+3u}{4-3u} = 7 \mathrm{e}^{24t} \\ \mathrm{e}^{24t} = \frac{4+3u}{7(4-3u)} \\ 24 t = \ln \left( \frac{4+3u}{7(4-3u)} \right) \\ t = \frac{1}{24} \ln \left( \frac{4+3u}{7(4-3u)} \right) \; \blacksquare \end{gather*}