Math Repository
about
topic
al
year
ly
Yearly
2007
P1 Q4
Topical
DE
07 P1 Q4
2007 H2 Mathematics Paper 1 Question 4
Differential Equations (DEs)
Answers
I
=
2
+
4
e
−
3
4
t
3
{I = \frac{2+4\mathrm{e}^{- \frac{3}{4}t}}{3}}
I
=
3
2
+
4
e
−
4
3
t
The current approaches
2
3
{\frac{2}{3}}
3
2
for large values of
t
{t }
t
Full solutions
4
d
I
d
t
=
2
−
3
I
4
2
−
3
I
d
I
d
t
=
1
∫
4
2
−
3
I
d
I
=
∫
1
d
t
−
4
3
ln
∣
2
−
3
I
∣
=
t
+
c
ln
∣
2
−
3
I
∣
=
−
3
4
t
−
3
4
c
∣
2
−
3
I
∣
=
e
−
3
4
t
−
3
4
c
∣
2
−
3
I
∣
=
e
−
3
4
c
e
−
3
4
t
2
−
3
I
=
A
e
−
3
4
t
\begin{gather*} 4 \frac{\mathrm{d}I}{\mathrm{d}t} = 2 - 3 I \\ \frac{4}{2 - 3 I} \frac{\mathrm{d}I}{\mathrm{d}t} = 1 \\ \int \frac{4}{2 - 3 I} \; \mathrm{d}I = \int 1 \; \mathrm{d}t \\ - \frac{4}{3} \ln \left| 2 - 3 I\right| = t + c \\ \ln | 2-3I | = - \frac{3}{4}t - \frac{3}{4}c \\ | 2-3I | = \mathrm{e}^{- \frac{3}{4}t - \frac{3}{4}c} \\ | 2-3I | = \mathrm{e}^{- \frac{3}{4}c}\mathrm{e}^{- \frac{3}{4}t} \\ 2 - 3I = A \mathrm{e}^{- \frac{3}{4}t} \end{gather*}
4
d
t
d
I
=
2
−
3
I
2
−
3
I
4
d
t
d
I
=
1
∫
2
−
3
I
4
d
I
=
∫
1
d
t
−
3
4
ln
∣
2
−
3
I
∣
=
t
+
c
ln
∣2
−
3
I
∣
=
−
4
3
t
−
4
3
c
∣2
−
3
I
∣
=
e
−
4
3
t
−
4
3
c
∣2
−
3
I
∣
=
e
−
4
3
c
e
−
4
3
t
2
−
3
I
=
A
e
−
4
3
t
When
t
=
0
,
{t=0, }
t
=
0
,
I
=
2
{I = 2}
I
=
2
2
−
3
(
2
)
=
A
e
−
3
4
(
0
)
A
=
−
4
\begin{align*} 2 - 3(2) &= A \mathrm{e}^{- \frac{3}{4}(0)} \\ A &= -4 \end{align*}
2
−
3
(
2
)
A
=
A
e
−
4
3
(
0
)
=
−
4
2
−
3
I
=
−
4
e
−
3
4
t
I
=
2
+
4
e
−
3
4
t
3
■
\begin{gather*} 2 - 3I = -4 \mathrm{e}^{- \frac{3}{4}t} \\ I = \frac{2+4\mathrm{e}^{- \frac{3}{4}t}}{3} \; \blacksquare \end{gather*}
2
−
3
I
=
−
4
e
−
4
3
t
I
=
3
2
+
4
e
−
4
3
t
■
As
t
→
∞
,
{t \to \infty, }
t
→
∞
,
e
−
3
4
t
→
0.
{\mathrm{e}^{- \frac{3}{4}t} \to 0.}
e
−
4
3
t
→
0.
Hence
θ
→
2
3
{\theta \to \frac{2}{3}}
θ
→
3
2
The current approaches
2
3
{\frac{2}{3}}
3
2
for large values of
t
■
{t \; \blacksquare}
t
■
Back to top ▲