2016 H2 Mathematics Paper 1 Question 9

Differential Equations (DEs)

Answers

(ib)
y=55e2t{y = 5 - 5 \mathrm{e}^{-2t}}
x=5t+52e2t52{x = 5t + \frac{5}{2}\mathrm{e}^{-2t} - \frac{5}{2}}
x=5t210t+20sin12tx = 5 t^2 - 10 t + 20 \sin \frac{1}{2} t
t=1.47 s{t = 1.47 \textrm{ s}}
t=1.05 s{t=1.05 \textrm{ s}}

Full solutions

(ia)
y=dxdtdydt=d2xdt2\begin{align*} y &= \frac{\mathrm{d}x}{\mathrm{d}t} \\ \frac{\mathrm{d}y}{\mathrm{d}t} &= \frac{\mathrm{d}^{2}x}{\mathrm{d}t^{2}} \end{align*}
Substituting y=dxdt{\displaystyle y=\frac{\mathrm{d}x}{\mathrm{d}t}} and dydt=d2xdt2{\displaystyle \frac{\mathrm{d}y}{\mathrm{d}t}=\frac{\mathrm{d}^{2}x}{\mathrm{d}t^{2}}} into the original differential equation,
dydt+2y=10dydt=102y  \begin{gather*} \frac{\mathrm{d}y}{\mathrm{d}t} + 2 y = 10 \\ \frac{\mathrm{d}y}{\mathrm{d}t} = 10 - 2y \; \blacksquare \end{gather*}
(ib)
dydt=102y1102ydydt=11102y  dy=1  dt12ln102y=t+cln102y=2t2c102y=e2t2c102y=e2ce2t102y=Ae2t\begin{align*} \frac{\mathrm{d}y}{\mathrm{d}t} &= 10 - 2y \\ \frac{1}{10 - 2 y} \frac{\mathrm{d}y}{\mathrm{d}t} &= 1 \\ \int \frac{1}{10 - 2 y} \;\mathrm{d}y &= \int 1 \; \mathrm{d}t \\ - \frac{1}{2} \ln \left| 10 - 2 y\right| &= t + c \\ \ln |10 - 2y | &= -2t-2c \\ |10 - 2y | &= \mathrm{e}^{-2t-2c} \\ |10 - 2y | &= \mathrm{e}^{-2c}\mathrm{e}^{-2t} \\ 10 - 2y &= A\mathrm{e}^{-2t} \\ \end{align*}
When t=0,y=dxdt=0,{t=0, y=\frac{\mathrm{d}x}{\mathrm{d}t}=0,}
102(0)=Ae2(0)A=10\begin{gather*} 10-2(0) = A\mathrm{e}^{-2(0)} \\ A = 10 \end{gather*}
102y=10e2ty=55e2t  \begin{gather*} 10-2y = 10\mathrm{e}^{-2t} \\ y = 5 - 5 \mathrm{e}^{-2t} \; \blacksquare \end{gather*}
dxdt=55e2tx=(55e2t)  dtx=5t+52e2t+C\begin{gather*} \frac{\mathrm{d}x}{\mathrm{d}t} = 5 - 5 \mathrm{e}^{-2t} \\ x = \int \left( 5 - 5 \mathrm{e}^{-2t} \right) \; \mathrm{d}t \\ x = 5t + \frac{5}{2}\mathrm{e}^{-2t} + C \\ \end{gather*}
When t=0,x=0,{t=0, x=0,}
0=5(0)+52e2(0)+CC=52\begin{gather*} 0 = 5(0) + \frac{5}{2}\mathrm{e}^{-2(0)} + C \\ C = -\frac{5}{2} \end{gather*}
x=5t+52e2t52  x = 5t + \frac{5}{2}\mathrm{e}^{-2t} - \frac{5}{2} \; \blacksquare

(ii)

d2xdt2=105sin12tdxdt=10t+10cos12t+c1\begin{gather*} \frac{\mathrm{d}^{2}x}{\mathrm{d}t^{2}} = 10 - 5 \sin \frac{1}{2} t \\ \frac{\mathrm{d}x}{\mathrm{d}t} = 10 t + 10 \cos \frac{1}{2} t + c_1 \\ \end{gather*}
When t=0,{t=0, } dxdt=0,{\frac{\mathrm{d}x}{\mathrm{d}t}=0,}
0=10(0)+10cos0+c1c1=10;\begin{gather*} 0 = 10(0) + 10 \cos 0 + c_1 \\ c_1 = -10; \end{gather*}
dxdt=10t10+10cos12tx=5t210t+20sin12t+c2\begin{gather*} \frac{\mathrm{d}x}{\mathrm{d}t} = 10 t - 10 + 10 \cos \frac{1}{2} t \\ x = 5 t^2 - 10 t + 20 \sin \frac{1}{2} t + c_2 \\ \end{gather*}
When t=0,{t=0, } x=0,{x=0,}
0=5(0)210(0)+20sin0+c2c2=0;\begin{gather*} 0 = 5(0)^2 - 10(0) + 20 \sin 0 + c_2 \\ c_2 = 0; \end{gather*}
x=5t210t+20sin12t  x = 5 t^2 - 10 t + 20 \sin \frac{1}{2} t \; \blacksquare

(iii)

For the first model, when x=5,{x=5,}
5t+52e2t52=55t + \frac{5}{2}\mathrm{e}^{-2t} - \frac{5}{2} = 5
Using a GC,
t=1.47 s (2 dp)  t = 1.47 \textrm{ s} \textrm{ (2 dp)} \; \blacksquare
For the second model, when x=5,{x=5,}
5t210t+20sin12t=55 t^2 - 10 t + 20 \sin \frac{1}{2} t = 5
Using a GC,
t=1.05 s (2 dp)  t = 1.05 \textrm{ s} \textrm{ (2 dp)} \; \blacksquare