Math Repository
about
topic
al
year
ly
Yearly
2009
P2 Q4
Topical
DE
09 P2 Q4
2009 H2 Mathematics Paper 2 Question 4
Differential Equations (DEs)
Answers
(i)
n
=
5
t
2
−
t
3
+
c
t
+
100
{n = 5 t^2 - t^3 + ct + 100}
n
=
5
t
2
−
t
3
+
c
t
+
100
(ii)
n
=
50
(
3
−
e
−
0.02
t
)
{n = 50\left( 3 - \mathrm{e}^{-0.02t} \right)}
n
=
50
(
3
−
e
−
0.02
t
)
The population approaches
150
{150 }
150
thousand eventually
Full solutions
(i)
d
2
n
d
t
2
=
10
−
6
t
d
n
d
t
=
10
t
−
3
t
2
+
c
n
=
5
t
2
−
t
3
+
c
t
+
d
\begin{align*} \frac{\mathrm{d}^{2}n}{\mathrm{d}t^{2}} &= 10 - 6 t \\ \frac{\mathrm{d}n}{\mathrm{d}t} &= 10 t - 3 t^2 + c \\ n &= 5 t^2 - t^3 + ct + d \end{align*}
d
t
2
d
2
n
d
t
d
n
n
=
10
−
6
t
=
10
t
−
3
t
2
+
c
=
5
t
2
−
t
3
+
c
t
+
d
When
t
=
0
,
{t=0, }
t
=
0
,
n
=
100
,
{n=100,}
n
=
100
,
100
=
5
(
0
)
2
−
0
3
+
c
(
0
)
+
d
d
=
100
\begin{gather*} 100 = 5(0)^2 - 0^3 + c(0) + d \\ d = 100 \end{gather*}
100
=
5
(
0
)
2
−
0
3
+
c
(
0
)
+
d
d
=
100
General solution:
n
=
5
t
2
−
t
3
+
c
t
+
100
■
n = 5 t^2 - t^3 + ct + 100 \; \blacksquare
n
=
5
t
2
−
t
3
+
c
t
+
100
■
(ii)
d
n
d
t
=
3
−
0.02
n
1
3
−
0.02
n
d
n
d
t
=
1
∫
1
3
−
0.02
n
d
n
=
∫
1
d
t
−
1
0.02
ln
∣
3
−
0.02
n
∣
=
t
+
C
ln
∣
3
−
0.02
n
∣
=
−
0.02
t
−
0.02
C
∣
3
−
0.02
n
∣
=
e
−
0.02
t
−
0.02
C
∣
3
−
0.02
n
∣
=
e
−
0.02
C
e
−
0.02
t
3
−
0.02
n
=
A
e
−
0.02
t
\begin{gather*} \frac{\mathrm{d}n}{\mathrm{d}t} = 3-0.02n \\ \frac{1}{3-0.02n} \frac{\mathrm{d}n}{\mathrm{d}t} = 1 \\ \int \frac{1}{3-0.02n} \; \mathrm{d}n = \int 1 \; \mathrm{d}t \\ -\frac{1}{0.02} \ln | 3 - 0.02n | = t + C \\ \ln | 3 - 0.02n | = -0.02t - 0.02C \\ | 3 - 0.02n | = \mathrm{e}^{-0.02t - 0.02C} \\ | 3 - 0.02n | = \mathrm{e}^{- 0.02C} \mathrm{e}^{-0.02t} \\ 3 - 0.02n = A \mathrm{e}^{- 0.02t} \end{gather*}
d
t
d
n
=
3
−
0.02
n
3
−
0.02
n
1
d
t
d
n
=
1
∫
3
−
0.02
n
1
d
n
=
∫
1
d
t
−
0.02
1
ln
∣3
−
0.02
n
∣
=
t
+
C
ln
∣3
−
0.02
n
∣
=
−
0.02
t
−
0.02
C
∣3
−
0.02
n
∣
=
e
−
0.02
t
−
0.02
C
∣3
−
0.02
n
∣
=
e
−
0.02
C
e
−
0.02
t
3
−
0.02
n
=
A
e
−
0.02
t
When
t
=
0
,
{t=0, }
t
=
0
,
n
=
100
,
{n=100,}
n
=
100
,
3
−
0.02
(
100
)
=
A
e
−
0.02
(
0
)
A
=
1
\begin{align*} 3-0.02(100) &= A \mathrm{e}^{-0.02(0)} \\ A &= 1 \end{align*}
3
−
0.02
(
100
)
A
=
A
e
−
0.02
(
0
)
=
1
3
−
0.02
n
=
e
−
0.02
t
n
=
50
(
3
−
e
−
0.02
t
)
■
\begin{gather*} 3 - 0.02n = \mathrm{e}^{- 0.02t} \\ n = 50\left( 3 - \mathrm{e}^{-0.02t} \right) \; \blacksquare \end{gather*}
3
−
0.02
n
=
e
−
0.02
t
n
=
50
(
3
−
e
−
0.02
t
)
■
As
t
→
∞
,
e
−
0.02
t
→
0
{t \to \infty, \mathrm{e}^{-0.02t} \to 0}
t
→
∞
,
e
−
0.02
t
→
0
n
=
50
(
3
−
e
−
0.02
t
)
→
150
\begin{align*} n &= 50\left( 3 - \mathrm{e}^{-0.02t} \right) \\ &\to 150 \end{align*}
n
=
50
(
3
−
e
−
0.02
t
)
→
150
Hence the population approaches
150
{150 }
150
thousand eventually
■
{\blacksquare}
■
Back to top ▲