2015 H2 Mathematics Paper 2 Question 1

Differential Equations (DEs)

Answers

Maximum h=32{h=32}
t=160401612h{t = 160 - 40\sqrt{16 - \frac{1}{2} h}}
160802{160 - 80\sqrt{2}} 46.9 years{\approx 46.9 \textrm{ years}}

Full solutions

(i)

At maximum height, dhdt=0,{\frac{\mathrm{d}h}{\mathrm{d}t} = 0,}
0=1101612h0=1612hh=32  \begin{gather*} 0 = \frac{1}{10} \sqrt{16 - \frac{1}{2}h} \\ 0 = 16 - \frac{1}{2}h \\ h = 32 \; \blacksquare \end{gather*}

(ii)

dhdt=1101612h11612hdhdt=110(1612h)12  dh=110  dt(1612h)1212(12)=110t+c4(1612h)12=110t+c\begin{gather*} \frac{\mathrm{d}h}{\mathrm{d}t} = \frac{1}{10} \sqrt{16 - \frac{1}{2} h} \\ \frac{1}{\sqrt{16 - \frac{1}{2} h}} \frac{\mathrm{d}h}{\mathrm{d}t} = \frac{1}{10} \\ \int \left(16 - \frac{1}{2} h\right)^{-\frac{1}{2}} \; \mathrm{d}h = \int \frac{1}{10} \; \mathrm{d}t \\ \frac{\left(16 - \frac{1}{2} h\right)^{\frac{1}{2}}}{\frac{1}{2}\left(-\frac{1}{2}\right)} = \frac{1}{10}t +c \\ - 4 \left(16 - \frac{1}{2} h\right)^{\frac{1}{2}} = \frac{1}{10}t + c \\ \end{gather*}
When t=0,h=0{t=0, h=0}
4160=110(0)+cc=16\begin{align*} -4 \sqrt{16-0} &= \frac{1}{10}(0) + c \\ c &= -16 \end{align*}
4(1612h)12=110t16110t=1641612ht=160401612h  \begin{gather*} - 4 \left(16 - \frac{1}{2} h\right)^{\frac{1}{2}} = \frac{1}{10}t -16 \\ \frac{1}{10}t = 16 - 4\sqrt{16 - \frac{1}{2} h} \\ t = 160 - 40\sqrt{16 - \frac{1}{2} h} \; \blacksquare \end{gather*}
When the tree reaches half the maximum height, h=16,{h=16,}
t=160401612(16)=160408=160802 years  \begin{align*} t &= 160 - 40\sqrt{16-\frac{1}{2}(16)} \\ &= 160 - 40\sqrt{8} \\ &= 160 - 80\sqrt{2} \textrm{ years} \; \blacksquare \end{align*}