Answers
Full solutions
(i)
When x=21, dtdx=−41
−41=k(1+21−(21)2)45k=−41k=−51■
(ii)
1+x−x2=−(x2−x−1)=−((x−21)2−45)=45−(x−21)2
dtdx=−51(1+x−x2)45−(x−21)21dtdx=−51∫45−(x−21)21dx=∫−51dt
Since 0≤x≤21,2251ln(25−(x−21)25+(x−21))=−51t+c51ln(5−2x+15+2x−1)=−51t+cln(5−2x+15+2x−1)=−55t+5c5−2x+15+2x−1=e−55t+5c5−2x+15+2x−1=Ae−55t
When t=0, x=21,5−2(21)+15+2(21)−1=Ae−55(0)A=55A=1
5−2x+15+2x−1=e−55t−55t=ln(5−2x+15+2x−1)t=−55ln(5−2x+15+2x−1)t=5ln(5+2x−15−2x+1)■
(iiia)
When x=21(21)=41,
t=5ln(5+2(41)−15−2(41)+1)=5ln(5−215+21)=5ln(25−125+1)■
(iiib)
When x=0,
t=5ln(5+2(0)−15−2(0)+1)=5ln(5−15+1)=2.152 min (3 dp)■
(iv)
5−2x+15+2x−1=e−55t5+2x−1=(5−2x+1)e−55t2x(1+e−55t)=(5+1)e−55t+1−5x=2(1+e−55t)(5+1)e−55t+1−5■