2017 H2 Mathematics Paper 1 Question 11

Differential Equations (DEs)

Answers

(ia)
dvdt=c{\displaystyle \frac{\mathrm{d}v}{\mathrm{d}t}=c}
(ib)
c=10{c = 10}
v=10t+4{v=10t+4}
v=1010ektk{v = \frac{10-10\mathrm{e}^{-kt}}{k}}
4ln109.21 s{4 \ln 10 \approx 9.21 \textrm{ s}}

Full solutions

(ia)
dvdt=c\frac{\mathrm{d}v}{\mathrm{d}t}=c
(ib)
dvdt=cv=ct+d\begin{gather*} \frac{\mathrm{d}v}{\mathrm{d}t} = c \\ v = ct + d \end{gather*}
When t=0,v=4,{t=0, v=4,}
4=c(0)+dd=4\begin{gather*} 4 = c(0) + d \\ d = 4 \end{gather*}
When t=2.5,v=29,{t=2.5, v=29,}
29=c(2.5)+4c=10  \begin{gather*} 29 = c(2.5) + 4 \\ c = 10 \; \blacksquare \end{gather*}
v=10t+4  v = 10t + 4 \; \blacksquare

(ii)

dvdt=10kv110kvdvdt=1110kv  dv=1  dt1kln10kv=t+Cln10kv=ktkC10kv=ektkC10kv=ekCekt10kv=Aekt\begin{gather*} \frac{\mathrm{d}v}{\mathrm{d}t} = 10 - kv \\ \frac{1}{10-kv} \frac{\mathrm{d}v}{\mathrm{d}t} = 1 \\ \int \frac{1}{10-kv} \;\mathrm{d}v = \int 1 \;\mathrm{d}t \\ -\frac{1}{k} \ln | 10 - kv | = t + C \\ \ln | 10 - kv | = -kt - kC \\ | 10 - kv | = \mathrm{e}^{-kt - kC} \\ | 10 - kv | = \mathrm{e}^{-kC}\mathrm{e}^{-kt} \\ 10 - kv = A \mathrm{e}^{-kt} \end{gather*}
When t=0,{t=0, } v=0,{v=0,}
10k(0)=Aek(0)A=10\begin{gather*} 10 - k(0) = A \mathrm{e}^{-k(0)} \\ A = 10 \end{gather*}
10kv=10ektv=1010ektk  \begin{gather*} 10 - kv = 10 \mathrm{e}^{-kt} \\ v = \frac{10-10\mathrm{e}^{-kt}}{k} \; \blacksquare \end{gather*}

(iii)

As t,ekt0{t \to \infty, \mathrm{e}^{-kt} \to 0}
v=1010ektk10k\begin{align*} v &= \frac{10-10\mathrm{e}^{-kt}}{k} \\ &\to \frac{10}{k} \end{align*}
Since the terminal velocity is 40,{40,}
10k=40k=14\begin{align*} \frac{10}{k} &= 40 \\ k &= \frac{1}{4} \end{align*}
At 90%{90\% } of the terminal velocity, v=36,{v = 36,}
36=4(1010e14t)9=1010e14te14t=11014t=ln110t=4ln110=4ln10 s  \begin{align*} 36 &= 4 \left( 10-10\mathrm{e}^{-\frac{1}{4}t} \right) \\ 9 &= 10-10\mathrm{e}^{-\frac{1}{4}t} \\ \mathrm{e}^{-\frac{1}{4}t} &= \frac{1}{10} \\ -\frac{1}{4}t &= \ln \frac{1}{10} \\ t &= -4 \ln \frac{1}{10} \\ &= 4 \ln 10 \textrm{ s} \; \blacksquare \end{align*}