Math Repository
about
topic
al
year
ly
Yearly
2021
P1 Q10
Topical
DE
21 P1 Q10
2021 H2 Mathematics Paper 1 Question 10
Differential Equations (DEs)
Answers
(a)
t
=
2
ln
10
ln
3
≈
4.19
min
{t = \frac{2 \ln 10}{\ln 3} \approx 4.19 \textrm{ min}}
t
=
l
n
3
2
l
n
10
≈
4.19
min
(b)
N
=
2
ln
3
(
d
+
(
50
ln
3
−
d
)
(
3
)
t
2
)
N = \frac{2}{\ln 3} \left( d + (50 \ln 3 - d) \left( 3 \right)^{\frac{t}{2}} \right)
N
=
l
n
3
2
(
d
+
(
50
ln
3
−
d
)
(
3
)
2
t
)
(ci)
d
>
50
ln
3
{d > 50 \ln 3}
d
>
50
ln
3
(cii)
5.35
min
{5.35 \textrm{ min}}
5.35
min
Full solutions
(a)
d
N
d
t
=
k
N
■
1
N
d
N
d
t
=
k
∫
1
N
d
θ
=
∫
k
d
t
ln
N
=
k
t
+
c
N
=
e
k
t
+
c
N
=
A
e
k
t
■
\begin{gather*} \frac{\mathrm{d}N}{\mathrm{d}t} = kN \; \blacksquare \\ \frac{1}{N} \frac{\mathrm{d}N}{\mathrm{d}t} = k \\ \int \frac{1}{N} \; \mathrm{d}\theta = \int k \; \mathrm{d}t \\ \ln N = kt + c \\ N = \mathrm{e}^{kt+c} \\ N = A\mathrm{e}^{kt} \; \blacksquare \\ \end{gather*}
d
t
d
N
=
k
N
■
N
1
d
t
d
N
=
k
∫
N
1
d
θ
=
∫
k
d
t
ln
N
=
k
t
+
c
N
=
e
k
t
+
c
N
=
A
e
k
t
■
When
t
=
0
,
N
=
100
{t=0, N = 100}
t
=
0
,
N
=
100
100
=
A
e
k
(
0
)
A
=
100
\begin{gather*} 100 = A \mathrm{e}^{k(0)} \\ A = 100 \end{gather*}
100
=
A
e
k
(
0
)
A
=
100
When
t
=
2
,
N
=
300
{t=2, N = 300}
t
=
2
,
N
=
300
300
=
100
e
k
(
2
)
2
k
=
ln
3
k
=
1
2
ln
3
■
\begin{gather*} 300 = 100 \mathrm{e}^{k(2)} \\ 2k = \ln 3 \\ k = \frac{1}{2} \ln 3 \; \blacksquare \end{gather*}
300
=
100
e
k
(
2
)
2
k
=
ln
3
k
=
2
1
ln
3
■
N
=
100
e
t
2
ln
3
N = 100 \mathrm{e}^{\frac{t}{2} \ln 3}
N
=
100
e
2
t
l
n
3
When
N
=
1000
{N = 1000}
N
=
1000
1000
=
100
e
t
2
ln
3
t
2
ln
3
=
ln
10
t
=
2
ln
10
ln
3
min
■
\begin{align*} 1000 &= 100 \mathrm{e}^{\frac{t}{2} \ln 3} \\ \frac{t}{2} \ln 3 &= \ln 10 \\ t &= \frac{2 \ln 10}{\ln 3} \textrm{ min} \; \blacksquare \end{align*}
1000
2
t
ln
3
t
=
100
e
2
t
l
n
3
=
ln
10
=
ln
3
2
ln
10
min
■
(b)
d
N
d
t
=
k
N
−
d
■
1
k
N
−
d
d
N
d
t
=
1
∫
1
k
N
−
d
d
θ
=
∫
1
d
t
1
k
ln
∣
k
N
−
d
∣
=
t
+
C
t
=
1
k
ln
∣
k
N
−
d
∣
−
C
■
∣
k
N
−
d
∣
=
e
k
t
+
k
C
∣
k
N
−
d
∣
=
e
k
C
e
k
t
k
N
−
d
=
A
2
e
k
t
■
\begin{gather*} \frac{\mathrm{d}N}{\mathrm{d}t} = kN - d \; \blacksquare \\ \frac{1}{kN-d} \frac{\mathrm{d}N}{\mathrm{d}t} = 1 \\ \int \frac{1}{kN-d} \; \mathrm{d}\theta = \int 1 \; \mathrm{d}t \\ \frac{1}{k} \ln | kN-d | = t + C \\ t = \frac{1}{k} \ln | kN-d | - C \; \blacksquare \\ |kN-d| = \mathrm{e}^{kt+kC} \\ |kN-d| = \mathrm{e}^{kC}\mathrm{e}^{kt} \\ kN - d = A_2 \mathrm{e}^{kt} \; \blacksquare \\ \end{gather*}
d
t
d
N
=
k
N
−
d
■
k
N
−
d
1
d
t
d
N
=
1
∫
k
N
−
d
1
d
θ
=
∫
1
d
t
k
1
ln
∣
k
N
−
d
∣
=
t
+
C
t
=
k
1
ln
∣
k
N
−
d
∣
−
C
■
∣
k
N
−
d
∣
=
e
k
t
+
k
C
∣
k
N
−
d
∣
=
e
k
C
e
k
t
k
N
−
d
=
A
2
e
k
t
■
When
t
=
0
,
T
=
100
{t=0, T=100}
t
=
0
,
T
=
100
100
k
−
d
=
A
2
e
k
(
0
)
A
2
=
100
k
−
d
A
2
=
50
ln
3
−
d
\begin{gather*} 100k - d = A_2 \mathrm{e}^{k(0)} \\ A_2 = 100k-d \\ A_2 = 50 \ln 3 - d \end{gather*}
100
k
−
d
=
A
2
e
k
(
0
)
A
2
=
100
k
−
d
A
2
=
50
ln
3
−
d
k
N
−
d
=
(
50
ln
3
−
d
)
e
k
t
(
1
2
ln
3
)
N
=
d
+
(
50
ln
3
−
d
)
e
(
1
2
ln
3
)
t
(
1
2
ln
3
)
N
=
d
+
(
50
ln
3
−
d
)
e
ln
3
t
2
(
1
2
ln
3
)
N
=
d
+
(
50
ln
3
−
d
)
(
3
)
t
2
N
=
2
ln
3
(
d
+
(
50
ln
3
−
d
)
(
3
)
t
2
)
■
\begin{gather*} kN - d = (50 \ln 3 - d) \mathrm{e}^{kt} \\ \left( \frac{1}{2} \ln 3 \right) N = d + (50 \ln 3 - d) \mathrm{e}^{\left( \frac{1}{2} \ln 3 \right)t} \\ \left( \frac{1}{2} \ln 3 \right) N = d + (50 \ln 3 - d) \mathrm{e}^{\ln 3^{\frac{t}{2}}} \\ \left( \frac{1}{2} \ln 3 \right) N = d + (50 \ln 3 - d) \left( 3 \right)^{\frac{t}{2}} \\ N = \frac{2}{\ln 3} \left( d + (50 \ln 3 - d) \left( 3 \right)^{\frac{t}{2}} \right) \; \blacksquare \\ \end{gather*}
k
N
−
d
=
(
50
ln
3
−
d
)
e
k
t
(
2
1
ln
3
)
N
=
d
+
(
50
ln
3
−
d
)
e
(
2
1
l
n
3
)
t
(
2
1
ln
3
)
N
=
d
+
(
50
ln
3
−
d
)
e
l
n
3
2
t
(
2
1
ln
3
)
N
=
d
+
(
50
ln
3
−
d
)
(
3
)
2
t
N
=
ln
3
2
(
d
+
(
50
ln
3
−
d
)
(
3
)
2
t
)
■
(ci)
For the bacteria to decrease,
50
ln
3
−
d
<
0
d
>
50
ln
3
■
\begin{gather*} 50 \ln 3 - d < 0 \\ d > 50 \ln 3 \; \blacksquare \end{gather*}
50
ln
3
−
d
<
0
d
>
50
ln
3
■
(cii)
When
N
=
0
,
{N=0,}
N
=
0
,
0
=
2
ln
3
(
58
+
(
50
ln
3
−
58
)
(
3
)
t
2
)
3
t
2
=
−
58
50
ln
3
−
58
t
2
=
ln
−
58
50
ln
3
−
58
ln
3
t
=
2
ln
−
58
50
ln
3
−
58
ln
3
t
=
5.35
min (3 sf)
■
\begin{gather*} 0 = \frac{2}{\ln 3} \left( 58 + (50 \ln 3 - 58) \left( 3 \right)^{\frac{t}{2}} \right) \\ 3^{\frac{t}{2}} = \frac{-58}{50\ln 3 - 58} \\ \frac{t}{2} = \frac{\ln \frac{-58}{50\ln 3 - 58}}{\ln 3}\\ t = \frac{2\ln \frac{-58}{50\ln 3 - 58}}{\ln 3}\\ t = 5.35 \textrm{ min} \textrm{ (3 sf)} \; \blacksquare \end{gather*}
0
=
ln
3
2
(
58
+
(
50
ln
3
−
58
)
(
3
)
2
t
)
3
2
t
=
50
ln
3
−
58
−
58
2
t
=
ln
3
ln
50
l
n
3
−
58
−
58
t
=
ln
3
2
ln
50
l
n
3
−
58
−
58
t
=
5.35
min
(3 sf)
■
Back to top ▲