2019 H2 Mathematics Paper 1 Question 11

Differential Equations (DEs)

Answers

(ia)
dθdt=k(θ16){\frac{\mathrm{d}\theta}{\mathrm{d}t} = -k(\theta - 16)}
θ=16+64(14)t30{\theta = 16 + 64 \left(\frac{1}{4}\right)^{\frac{t}{30} }}
(ib)
24C{24 ^\circ \textrm{C}}
t=540 min{t = 540 \textrm{ min}}

Full solutions

(ia)
dθdt=k(θ16)  1θ16dθdt=k1θ16  dθ=k  dtlnθ16=kt+cθ16=ekt+cθ16=ecektθ16=Aektθ=16+Aekt\begin{gather*} \frac{\mathrm{d}\theta}{\mathrm{d}t} = -k(\theta - 16)\; \blacksquare \\ \frac{1}{\theta - 16} \frac{\mathrm{d}\theta}{\mathrm{d}t} = - k \\ \int \frac{1}{\theta - 16} \; \mathrm{d}\theta = \int -k \; \mathrm{d}t \\ \ln \left| \theta - 16\right| = -kt + c \\ |\theta - 16| = \mathrm{e}^{-kt+c} \\ |\theta - 16| = \mathrm{e}^c\mathrm{e}^{-kt} \\ \theta - 16 = A\mathrm{e}^{-kt} \\ \theta = 16 + A\mathrm{e}^{-kt} \\ \end{gather*}
When t=0,θ=80{t=0, \theta = 80}
80=16+Aek(0)A=64\begin{gather*} 80 = 16 + A\mathrm{e}^{-k(0)} \\ A = 64 \end{gather*}
When t=30,θ=32{t=30, \theta = 32}
32=16+64ek(30)e30k=166430k=ln14k=130ln14\begin{gather*} 32 = 16 + 64\mathrm{e}^{-k(30)} \\ \mathrm{e}^{-30k} = \frac{16}{64} \\ -30k = \ln \frac{1}{4} \\ k = -\frac{1}{30}\ln \frac{1}{4} \\ \end{gather*}
θ=16+64e(130ln14)t=16+64eln14t30θ=16+64(14)t30  \begin{align*} \theta &= 16 + 64\mathrm{e}^{\left(\frac{1}{30} \ln \frac{1}{4}\right) t} \\ &= 16 + 64\mathrm{e}^{\ln \frac{1}{4}^{\frac{t}{30}} } \\ \theta &= 16 + 64 \left(\frac{1}{4}\right)^{\frac{t}{30} } \; \blacksquare \end{align*}
(ib)
When t=45,{t=45,}
θ=16+64(14)4530=24C  \begin{align*} \theta &= 16 + 64 \left(\frac{1}{4}\right)^{\frac{45}{30} } \\ &= 24 ^\circ \textrm{C} \; \blacksquare \end{align*}

(ii)

dTdt=k2TTdTdt=k2T  dT=k2  dt12T2=k2t+C\begin{align*} \frac{\mathrm{d}T}{\mathrm{d}t} &= \frac{k_2}{T} \\ T \frac{\mathrm{d}T}{\mathrm{d}t} &= k_2 \\ \int T \; \mathrm{d}T &= \int k_2 \; \mathrm{d}t \\ \frac{1}{2} T^2 &= k_2 t + C \end{align*}
When t=0,T=0{t=0, T=0}
0=k2(0)+CC=0\begin{gather*} 0 = k_2(0) + C \\ C = 0 \end{gather*}
When t=60,T=1{t=60, T=1}
12(1)2=k2(60)k=1120\begin{gather*} \frac{1}{2}(1)^2 = k_2(60) \\ k = \frac{1}{120} \end{gather*}
12T2=1120t\frac{1}{2}T^2 = \frac{1}{120}t
When it is first safe to skate on, T=3{T=3}
12(3)2=1120tt=540 min  \begin{gather*} \frac{1}{2}(3)^2 = \frac{1}{120} t \\ t = 540 \textrm{ min} \; \blacksquare \end{gather*}