2024 H2 Mathematics Paper 1 Question 8

Maclaurin Series

Answers

(a)

k=2.

(b)

12x24x3+

(c)

a=1, b=4.

Full Solutions

(a)
y=cos(1e2x)dydx=2e2xsin(1e2x)d2ydx2=4e2xsin(1e2x)4e4xcos(1e2x)=2dydx4ye4x=2(dydx2ye4x)
(b)
d2ydx2=2(dydx2ye4x)d3ydx3=2(d2ydx22dydxe4x8e4xy)

When x=0,

y=cos(1e2(0))=1dydx=2e2(0)sin(1e2(0))=0d2ydx2=2(02(1)e4(0))=4d3ydx3=2(42(0)e4(0)8e4(0)(1))=24
Maclaurin expansion of cos(1e2x)=f(0)+xf(0)+x22!f(0)+x33!f(0)+=1+x(0)+x22(4)+x36(24)+=12x24x3+
(c)
1a+bx2=(a+bx2)12=a12(1+bx2a)12=a12(112(bx2a)+)=a12(1bx22a+)=a12bx22a32+

Comparing constant terms,

a12=1a=1

Comparing coefficient of x2,

b2a32=2b2=2b=4