Math Repository
about
topic
al
year
ly
Yearly
2024
P1 Q8
Topical
Maclaurin
24 P1 Q8
2024 H2 Mathematics Paper 1 Question 8
Maclaurin Series
Answers
(a)
k
=
2.
(b)
1
−
2
x
2
−
4
x
3
+
⋯
(c)
a
=
1
,
b
=
4.
Full Solutions
(a)
y
=
cos
(
1
−
e
2
x
)
d
y
d
x
=
2
e
2
x
sin
(
1
−
e
2
x
)
d
2
y
d
x
2
=
4
e
2
x
sin
(
1
−
e
2
x
)
−
4
e
4
x
cos
(
1
−
e
2
x
)
=
2
d
y
d
x
−
4
y
e
4
x
=
2
(
d
y
d
x
−
2
y
e
4
x
)
∎
(b)
d
2
y
d
x
2
=
2
(
d
y
d
x
−
2
y
e
4
x
)
d
3
y
d
x
3
=
2
(
d
2
y
d
x
2
−
2
d
y
d
x
e
4
x
−
8
e
4
x
y
)
When
x
=
0
,
y
=
cos
(
1
−
e
2
(
0
)
)
=
1
d
y
d
x
=
2
e
2
(
0
)
sin
(
1
−
e
2
(
0
)
)
=
0
d
2
y
d
x
2
=
2
(
0
−
2
(
1
)
e
4
(
0
)
)
=
−
4
d
3
y
d
x
3
=
2
(
−
4
−
2
(
0
)
e
4
(
0
)
−
8
e
4
(
0
)
(
1
)
)
=
−
24
Maclaurin expansion of
cos
(
1
−
e
2
x
)
=
f
(
0
)
+
x
f
′
(
0
)
+
x
2
2
!
f
′
′
(
0
)
+
x
3
3
!
f
′
′
′
(
0
)
+
⋯
=
1
+
x
(
0
)
+
x
2
2
(
−
4
)
+
x
3
6
(
−
24
)
+
⋯
=
1
−
2
x
2
−
4
x
3
+
⋯
(c)
1
a
+
b
x
2
=
(
a
+
b
x
2
)
−
1
2
=
a
−
1
2
(
1
+
b
x
2
a
)
−
1
2
=
a
−
1
2
(
1
−
1
2
(
b
x
2
a
)
+
⋯
)
=
a
−
1
2
(
1
−
b
x
2
2
a
+
⋯
)
=
a
−
1
2
−
b
x
2
2
a
3
2
+
⋯
Comparing constant terms,
a
−
1
2
=
1
a
=
1
∎
Comparing coefficient of
x
2
,
−
b
2
a
3
2
=
−
2
−
b
2
=
−
2
b
=
4
∎