2008 H2 Mathematics Paper 2 Question 1

Maclaurin Series

Answers

$lib/utils/mathlify/numerical/bisection75 -7.484375 L 0.3125 -7.328125 C 1.671875 -6.234375 1.9375 -5.03125 1.9375 -2.71875 C 1.9375 -0.40625 1.703125 0.75 0.3125 1.9375 L 0.453125 2.109375 C 1.890625 1.125 2.84375 -0.734375 2.84375 -2.671875 C 2.84375 -4.8125 1.921875 -6.515625 0.421875 -7.484375 Z M 0.421875 -7.484375 "/>
x+x2+13x3+{x + x^2 + \frac{1}{3} x^3 + \ldots}
{xR:1.96<x<1.56}{\{ x \in \mathbb{R}:}\allowbreak {-1.96 < x < 1.56 \}}

Full solutions

(i)

$lib/utils/mathlify/numerical/bisection75 -7.484375 L 0.3125 -7.328125 C 1.671875 -6.234375 1.9375 -5.03125 1.9375 -2.71875 C 1.9375 -0.40625 1.703125 0.75 0.3125 1.9375 L 0.453125 2.109375 C 1.890625 1.125 2.84375 -0.734375 2.84375 -2.671875 C 2.84375 -4.8125 1.921875 -6.515625 0.421875 -7.484375 Z M 0.421875 -7.484375 "/>

(ii)

exsinx=(1+x+12x2+16x3+)(x16x3+)=x+x2+(1216)x3+=x+x2+13x3+  \begin{align*} & \mathrm{e}^x \sin x \\ & = \left( 1 + x + \frac{1}{2} x^2 + \frac{1}{6} x^3 +\ldots \right) \left( x - \frac{1}{6} x^3 +\ldots \right) \\ & = x + x^2 + \left( \frac{1}{2}-\frac{1}{6} \right)x^3 + \ldots \\ & = x + x^2 + \frac{1}{3} x^3 + \ldots \; \blacksquare \end{align*}

(iii)

(iv)

For g(x){g(x)} to be within ±0.5{\pm 0.5} of f(x){f(x)}
0.5<f(x)g(x)<0.5-0.5 < f(x)-g(x) < 0.5
Considering the graphs of y=f(x)g(x),  {y=f(x)-g(x), \;} y=0.5{y=-0.5 } and y=0.5,{y=0.5, }
Hence the set of values of x{x} required:
{xR:1.96<x<1.56}  \{ x \in \mathbb{R}: -1.96 < x < 1.56 \} \; \blacksquare