Math Repository
about
topic
al
year
ly
Yearly
2008
P2 Q1
Topical
Maclaurin
08 P2 Q1
2008 H2 Mathematics Paper 2 Question 1
Maclaurin Series
Answers
(i)
$lib/utils/mathlify/numerical/bisection75 -7.484375 L 0.3125 -7.328125 C 1.671875 -6.234375 1.9375 -5.03125 1.9375 -2.71875 C 1.9375 -0.40625 1.703125 0.75 0.3125 1.9375 L 0.453125 2.109375 C 1.890625 1.125 2.84375 -0.734375 2.84375 -2.671875 C 2.84375 -4.8125 1.921875 -6.515625 0.421875 -7.484375 Z M 0.421875 -7.484375 "/>
(ii)
x
+
x
2
+
1
3
x
3
+
…
{x + x^2 + \frac{1}{3} x^3 + \ldots}
x
+
x
2
+
3
1
x
3
+
…
(iii)
(iv)
{
x
∈
R
:
−
1.96
<
x
<
1.56
}
{\{ x \in \mathbb{R}:}\allowbreak {-1.96 < x < 1.56 \}}
{
x
∈
R
:
−
1.96
<
x
<
1.56
}
Full solutions
(i)
$lib/utils/mathlify/numerical/bisection75 -7.484375 L 0.3125 -7.328125 C 1.671875 -6.234375 1.9375 -5.03125 1.9375 -2.71875 C 1.9375 -0.40625 1.703125 0.75 0.3125 1.9375 L 0.453125 2.109375 C 1.890625 1.125 2.84375 -0.734375 2.84375 -2.671875 C 2.84375 -4.8125 1.921875 -6.515625 0.421875 -7.484375 Z M 0.421875 -7.484375 "/>
(ii)
e
x
sin
x
=
(
1
+
x
+
1
2
x
2
+
1
6
x
3
+
…
)
(
x
−
1
6
x
3
+
…
)
=
x
+
x
2
+
(
1
2
−
1
6
)
x
3
+
…
=
x
+
x
2
+
1
3
x
3
+
…
■
\begin{align*} & \mathrm{e}^x \sin x \\ & = \left( 1 + x + \frac{1}{2} x^2 + \frac{1}{6} x^3 +\ldots \right) \left( x - \frac{1}{6} x^3 +\ldots \right) \\ & = x + x^2 + \left( \frac{1}{2}-\frac{1}{6} \right)x^3 + \ldots \\ & = x + x^2 + \frac{1}{3} x^3 + \ldots \; \blacksquare \end{align*}
e
x
sin
x
=
(
1
+
x
+
2
1
x
2
+
6
1
x
3
+
…
)
(
x
−
6
1
x
3
+
…
)
=
x
+
x
2
+
(
2
1
−
6
1
)
x
3
+
…
=
x
+
x
2
+
3
1
x
3
+
…
■
(iii)
(iv)
For
g
(
x
)
{g(x)}
g
(
x
)
to be within
±
0.5
{\pm 0.5}
±
0.5
of
f
(
x
)
{f(x)}
f
(
x
)
−
0.5
<
f
(
x
)
−
g
(
x
)
<
0.5
-0.5 < f(x)-g(x) < 0.5
−
0.5
<
f
(
x
)
−
g
(
x
)
<
0.5
Considering the graphs of
y
=
f
(
x
)
−
g
(
x
)
,
{y=f(x)-g(x), \;}
y
=
f
(
x
)
−
g
(
x
)
,
y
=
−
0.5
{y=-0.5 }
y
=
−
0.5
and
y
=
0.5
,
{y=0.5, }
y
=
0.5
,
Hence the set of values of
x
{x}
x
required:
{
x
∈
R
:
−
1.96
<
x
<
1.56
}
■
\{ x \in \mathbb{R}: -1.96 < x < 1.56 \} \; \blacksquare
{
x
∈
R
:
−
1.96
<
x
<
1.56
}
■
Back to top ▲