Math Repository
about
topic
al
year
ly
Yearly
2009
P1 Q7
Topical
Maclaurin
09 P1 Q7
2009 H2 Mathematics Paper 1 Question 7
Maclaurin Series
Answers
(i)
f
(
0
)
=
e
{f(0)=\mathrm{e}}
f
(
0
)
=
e
f
′
(
0
)
=
0
{f'(0)=0}
f
′
(
0
)
=
0
f
′
′
(
0
)
=
−
e
{f''(0)=-\mathrm{e}}
f
′′
(
0
)
=
−
e
f
(
x
)
=
e
−
e
2
x
2
+
…
{f(x)=\mathrm{e} - \frac{\mathrm{e}}{2} x^2 + \ldots}
f
(
x
)
=
e
−
2
e
x
2
+
…
(ii)
a
=
1
e
,
b
=
1
2
e
{a=\frac{1}{\mathrm{e}}, \; b = \frac{1}{2\mathrm{e}}}
a
=
e
1
,
b
=
2
e
1
Full solutions
(i)
Let
y
=
f
(
x
)
=
e
cos
x
{y=f(x)=\mathrm{e}^{\cos x}}
y
=
f
(
x
)
=
e
c
o
s
x
d
y
d
x
=
−
sin
x
e
cos
x
=
−
y
sin
x
\begin{align*} \frac{\mathrm{d}y}{\mathrm{d}x} &= - \sin x \; \mathrm{e}^{\cos x} \\ &= -y \sin x \end{align*}
d
x
d
y
=
−
sin
x
e
c
o
s
x
=
−
y
sin
x
Differentiating implicitly w.r.t.
x
,
{x,}
x
,
d
2
y
d
x
2
=
−
d
y
d
x
sin
x
−
y
cos
x
\frac{\mathrm{d}^2y}{\mathrm{d}x^2} = - \frac{\mathrm{d}y}{\mathrm{d}x} \sin x - y \cos x
d
x
2
d
2
y
=
−
d
x
d
y
sin
x
−
y
cos
x
f
(
0
)
=
e
cos
0
=
e
■
f
′
(
0
)
=
−
e
sin
0
=
0
■
f
′
′
(
0
)
=
−
0
sin
0
−
e
cos
0
=
−
e
■
\begin{align*} f(0) &= \mathrm{e}^{\cos 0} \\ &= \mathrm{e} \; \blacksquare \\ f'(0) &= -\mathrm{e} \sin 0 \\ &= 0 \; \blacksquare \\ f''(0) &= -0\sin 0 - \mathrm{e} \cos 0 \\ &= -\mathrm{e} \; \blacksquare \\ \end{align*}
f
(
0
)
f
′
(
0
)
f
′′
(
0
)
=
e
c
o
s
0
=
e
■
=
−
e
sin
0
=
0
■
=
−
0
sin
0
−
e
cos
0
=
−
e
■
Hence the Maclaurin series
f
(
x
)
=
e
+
0
x
+
0
2
!
x
2
+
…
=
e
−
e
2
x
2
+
…
■
\begin{align*} f(x) &= \mathrm{e} + 0 x + \frac{0}{2!}x^2 + \ldots \\ &= \mathrm{e} - \frac{\mathrm{e}}{2} x^2 + \ldots \; \blacksquare \end{align*}
f
(
x
)
=
e
+
0
x
+
2
!
0
x
2
+
…
=
e
−
2
e
x
2
+
…
■
(ii)
1
a
+
b
x
2
=
(
a
+
b
x
2
)
−
1
=
a
−
1
(
1
+
b
x
2
a
)
−
1
=
1
a
(
1
−
b
x
2
a
+
…
)
=
1
a
−
b
a
2
x
2
+
…
\begin{align*} & \frac{1}{a+bx^2} \\ & = \left( a+bx^2 \right)^{-1} \\ & = a^{-1} \left( 1 + \frac{bx^2}{a} \right)^{-1} \\ &= \frac{1}{a} \left( 1 - \frac{bx^2}{a} + \ldots \right) \\ &= \frac{1}{a} - \frac{b}{a^2}x^2 + \ldots \end{align*}
a
+
b
x
2
1
=
(
a
+
b
x
2
)
−
1
=
a
−
1
(
1
+
a
b
x
2
)
−
1
=
a
1
(
1
−
a
b
x
2
+
…
)
=
a
1
−
a
2
b
x
2
+
…
Since the first two non-zero terms are equal,
1
a
=
e
a
=
1
e
■
−
b
a
2
=
−
e
2
b
=
1
2
e
■
\begin{align*} \frac{1}{a} &= \mathrm{e} \\ a &= \frac{1}{\mathrm{e}} \; \blacksquare \\ -\frac{b}{a^2} &= -\frac{\mathrm{e}}{2} \\ b &= \frac{1}{2\mathrm{e}} \; \blacksquare \end{align*}
a
1
a
−
a
2
b
b
=
e
=
e
1
■
=
−
2
e
=
2
e
1
■
Back to top ▲