2021 H2 Mathematics Paper 1 Question 7
Maclaurin Series
Answers
1+x+21x2+31x3+… Full solutions
(a)
ylny=esin−1x=sin−1x Differentiating w.r.t.
x,y1dxdy=1−x211−x2dxdy=y(1−x2)(dxdy)2=y2 Differentiating w.r.t.
x,2(1−x2)dxdydx2d2y−2x(dxdy)2=2ydxdy (1−x2)dx2d2y=xdxdy+y■ (b)
Differentiating w.r.t.
x,(1−x2)dx3d3y−2xdx2d2y=dxdy+xdx2d2y+dxdy When
x=0,y=esin−10=1 11dxdydxdy=1−021=1 (1−02)dx2d2ydx2d2y=0(1)+1=1 (1−03)dx3d3y−0dx3d3y=1+0+1=2 Maclaurin expansion for
esin−1x:esin−1x=1+x−2!1x2+3!1x3+…=1+x+21x2+31x3+…■