2013 H2 Mathematics Paper 2 Question 3

Maclaurin Series

Answers

f(0)=0{f(0)=0}
f(0)=2{f'(0)=2}
f(0)=4{f''(0)=-4}
f(0)=14{f'''(0)=14}
f(x)2x2x2+73x3{f(x)\approx2 x - 2 x^2 + \frac{7}{3} x^3}
a=1,  {a=-1,\;} n=2{n=2}
Third non-zero term =13x3{= - \frac{1}{3}x^3}

Full solutions

(i)

Let y=f(x)=ln(1+2sinx){y=f(x)=\ln (1+2\sin x)}
ey=1+2sinx\mathrm{e}^y = 1 + 2 \sin x
Differentiating implicitly w.r.t. x,{x,}
eydydx=2cosxeyd2ydx2+ey(dydx)2=2sinxeyd3ydx3+eydydxd2ydx2+2eydydxd2ydx2+ey(dydx)3=2cosx\begin{gather*} \mathrm{e}^y \frac{\mathrm{d}y}{\mathrm{d}x} = 2 \cos x \\ \mathrm{e}^y \frac{\mathrm{d}^2y}{\mathrm{d}x^2} + \mathrm{e}^y \left( \frac{\mathrm{d}y}{\mathrm{d}x} \right)^2 =-2 \sin x \\ \mathrm{e}^y \frac{\mathrm{d}^3y}{\mathrm{d}x^3} + \mathrm{e}^y \frac{\mathrm{d}y}{\mathrm{d}x} \frac{\mathrm{d}^2y}{\mathrm{d}x^2} + 2 \mathrm{e}^y \frac{\mathrm{d}y}{\mathrm{d}x} \frac{\mathrm{d}^2y}{\mathrm{d}x^2} + \mathrm{e}^y \left( \frac{\mathrm{d}y}{\mathrm{d}x} \right)^3 =-2 \cos x \\ \end{gather*}
When x=0,{x=0,}
y=ln(1+2sin0)=0e0dydx=2cos0dydx=2e0d2ydx2+e0(2)2=2sin0d2ydx2=4e0d3ydx3+3e0(2)(4)+e0(2)3=2cos0d3ydx3=14\begin{gather*} y = \ln(1+2\sin 0) = 0 \\ \mathrm{e}^0 \frac{\mathrm{d}y}{\mathrm{d}x} = 2 \cos 0 \\ \frac{\mathrm{d}y}{\mathrm{d}x} = 2 \\ \mathrm{e}^0 \frac{\mathrm{d}^2y}{\mathrm{d}x^2} + \mathrm{e}^0 (2)^2 =-2 \sin 0 \\ \frac{\mathrm{d}^2y}{\mathrm{d}x^2} = -4 \\ \mathrm{e}^0 \frac{\mathrm{d}^3y}{\mathrm{d}x^3} + 3 \mathrm{e}^0 (2)(-4) + \mathrm{e}^0 (2)^3 =-2 \cos 0 \\ \frac{\mathrm{d}^3y}{\mathrm{d}x^3} = 14 \end{gather*}
f(0)=0  f(0)=2  f(0)=4  f(0)=14  \begin{align*} f(0) &= 0 \; \blacksquare \\ f'(0) &= 2 \; \blacksquare \\ f''(0) &= -4 \; \blacksquare \\ f'''(0) &= 14 \; \blacksquare \\ \end{align*}
Maclaurin series for f(x):{f(x):}
f(x)=0+2x42x2+143!x3+=2x2x2+73x3+\begin{align*} f(x) &= 0 + 2x - \frac{4}{2} x^2 + \frac{14}{3!}x^3 + \ldots \\ &= 2 x - 2 x^2 + \frac{7}{3} x^3 + \ldots \blacksquare \end{align*}

(ii)

eaxsinnx=(1+ax+a2x22+)(nxn3x36+)=nx+anx2+(n36+a2n2)x3+\begin{align*} & \mathrm{e}^{ax} \sin nx \\ & = \left( 1 + ax + \frac{a^2x^2}{2} + \ldots \right) \left( nx - \frac{n^3x^3}{6} + \ldots \right) \\ & = nx + anx^2 + \left( -\frac{n^3}{6}+\frac{a^2n}{2} \right)x^3 + \ldots \end{align*}
Since the first two non-zero terms are equal,
n=2  an=2a=1  \begin{align*} n &= 2 \; \blacksquare \\ an &= -2 \\ a &= -1 \; \blacksquare \\ \end{align*}
Third non-zero term=(236+(1)2(2)2)x3=13x3  \begin{align*} & \textrm{Third non-zero term} \\ & = \left( -\frac{2^3}{6} + \frac{(-1)^2(2)}{2} \right)x^3 \\ &= - \frac{1}{3} x^3 \; \blacksquare \end{align*}