Answers    f ′ ( x ) = 1 1 + ( 2 + x ) 2 f'(x) = \frac{1}{1 + (\sqrt{2} + x)^2} f ′ ( x ) = 1 + ( 2  + x ) 2 1  
	f ′ ′ ( x ) = − 2 ( 2 + x ) ( 1 + ( 2 + x ) 2 ) 2 f''(x) = \frac{-2(\sqrt{2} + x)}{\left(  1 + (\sqrt{2} + x)^2 \right)^2} f ′′ ( x ) = ( 1 + ( 2  + x ) 2 ) 2 − 2 ( 2  + x )  
0.955 + 0.333 x − 0.157 x 2 + … 0.955 + 0.333x -0.157x^2 + \ldots 0.955 + 0.333 x − 0.157 x 2 + …    Full solutions   
(a)  f ′ ( x ) = 1 1 + ( 2 + x ) 2    ■ f ′ ′ ( x ) = − 2 ( 2 + x ) ( 1 + ( 2 + x ) 2 ) 2    ■ \begin{align*}
    f'(x) &= \frac{1}{1 + (\sqrt{2} + x)^2} \; \blacksquare
	\\ f''(x) &= \frac{-2(\sqrt{2} + x)}{\left(  1 + (\sqrt{2} + x)^2 \right)^2} \; \blacksquare
  \end{align*} f ′ ( x ) f ′′ ( x )  = 1 + ( 2  + x ) 2 1  ■ = ( 1 + ( 2  + x ) 2 ) 2 − 2 ( 2  + x )  ■  
(b)  f ( 0 ) = tan  − 1 2 = 0.955  (3 sf) \begin{align*}
    f(0) &= \tan^{-1} \sqrt{2}
	\\ &= 0.955 \textrm{ (3 sf)}
  \end{align*} f ( 0 )  = tan − 1 2  = 0.955  (3 sf)  f ′ ( 0 ) = 1 1 + 2 = 1 3 = 0.333  (3 sf) \begin{align*}
    f'(0) &= \frac{1}{1+2}
		\\ &= \frac{1}{3}
		\\ &= 0.333 \textrm{ (3 sf)}
	
  \end{align*} f ′ ( 0 )  = 1 + 2 1  = 3 1  = 0.333  (3 sf)  f ′ ′ ( 0 ) = − 2 2 ( 1 + 2 ) 2 = − 0.31427  (5 sf) \begin{align*}
    f''(0) &= \frac{-2\sqrt{2}}{(1+2)^2}
		\\ &= -0.31427 \textrm{ (5 sf)}
	
  \end{align*} f ′′ ( 0 )  = ( 1 + 2 ) 2 − 2 2   = − 0.31427  (5 sf)  
	Maclaurin series for 
f ( x ) , {f(x),} f ( x ) , f ( x ) = 0.955 + 0.333 x + − 0.31427 2 x 2 + … = 0.955 + 0.333 x − 0.157 x 2 + …    ■  (3 sf) \begin{align*}
    f(x) &= 0.955 + 0.333x + \frac{-0.31427}{2} x^2 + \ldots
		\\ &= 0.955 + 0.333x -0.157x^2 + \ldots \; \blacksquare \textrm{ (3 sf)}
	
  \end{align*} f ( x )  = 0.955 + 0.333 x + 2 − 0.31427  x 2 + … = 0.955 + 0.333 x − 0.157 x 2 + … ■  (3 sf)     Question Commentary  
	As this is a calculus question, we need to ensure that we are working in radians rather than degrees: this
	is likely the source of most mistakes.
	Otherwise, this is a reasonably standard application of differentiation techniques
	(including the tangent inverse differentiation formula that is provided in the formula booklet)
	and the general Maclaurin formula (also provided) involving derivatives.