2022 H2 Mathematics Paper 1 Question 2

Maclaurin Series

Answers

f(x)=11+(2+x)2f'(x) = \frac{1}{1 + (\sqrt{2} + x)^2}

f(x)=2(2+x)(1+(2+x)2)2f''(x) = \frac{-2(\sqrt{2} + x)}{\left( 1 + (\sqrt{2} + x)^2 \right)^2}

0.955+0.333x0.157x2+0.955 + 0.333x -0.157x^2 + \ldots

Full solutions

(a)

f(x)=11+(2+x)2  f(x)=2(2+x)(1+(2+x)2)2  \begin{align*} f'(x) &= \frac{1}{1 + (\sqrt{2} + x)^2} \; \blacksquare \\ f''(x) &= \frac{-2(\sqrt{2} + x)}{\left( 1 + (\sqrt{2} + x)^2 \right)^2} \; \blacksquare \end{align*}

(b)

f(0)=tan12=0.955 (3 sf)\begin{align*} f(0) &= \tan^{-1} \sqrt{2} \\ &= 0.955 \textrm{ (3 sf)} \end{align*}
f(0)=11+2=13=0.333 (3 sf)\begin{align*} f'(0) &= \frac{1}{1+2} \\ &= \frac{1}{3} \\ &= 0.333 \textrm{ (3 sf)} \end{align*}
f(0)=22(1+2)2=0.31427 (5 sf)\begin{align*} f''(0) &= \frac{-2\sqrt{2}}{(1+2)^2} \\ &= -0.31427 \textrm{ (5 sf)} \end{align*}
Maclaurin series for f(x),{f(x),}
f(x)=0.955+0.333x+0.314272x2+=0.955+0.333x0.157x2+   (3 sf)\begin{align*} f(x) &= 0.955 + 0.333x + \frac{-0.31427}{2} x^2 + \ldots \\ &= 0.955 + 0.333x -0.157x^2 + \ldots \; \blacksquare \textrm{ (3 sf)} \end{align*}

Question Commentary

As this is a calculus question, we need to ensure that we are working in radians rather than degrees: this is likely the source of most mistakes.

Otherwise, this is a reasonably standard application of differentiation techniques (including the tangent inverse differentiation formula that is provided in the formula booklet) and the general Maclaurin formula (also provided) involving derivatives.