Math Repository
about
topic
al
year
ly
Yearly
2011
P1 Q4
Topical
Maclaurin
11 P1 Q4
2011 H2 Mathematics Paper 1 Question 4
Maclaurin Series
Answers
(i)
1
−
3
x
2
+
4
x
4
{1 - 3 x^2 + 4 x^4}
1
−
3
x
2
+
4
x
4
(iia)
a
−
a
3
+
4
5
a
5
{a - a^3 + \frac{4}{5}a^5}
a
−
a
3
+
5
4
a
5
∫
0
π
4
g
(
x
)
d
x
≈
0.540
{\int_0^{\frac{\pi}{4}} g(x) \; \mathrm{d}x \approx 0.540}
∫
0
4
π
g
(
x
)
d
x
≈
0.540
(iib)
0.475
{0.475}
0.475
The approximation is not very good as
1
4
π
{\frac{1}{4}\pi}
4
1
π
is not sufficiently small enough for the terms
x
5
{x^5}
x
5
and above that was omitted in the Maclaurin series in (i) to be negligible
Full solutions
(i)
cos
6
x
=
(
1
−
1
2
x
2
+
1
24
x
4
+
…
)
6
=
1
+
6
(
−
1
2
x
2
+
1
24
x
4
)
+
6
(
5
)
2
(
−
1
2
x
2
+
1
24
x
4
)
2
+
…
=
1
−
3
x
2
+
1
4
x
4
+
15
(
1
4
x
4
+
…
)
+
…
=
1
−
3
x
2
+
4
x
4
+
…
■
\begin{align*} & \cos^6 x \\ &= \left( 1 - \frac{1}{2} x^2 + \frac{1}{24} x^4 + \ldots \right)^6 \\ &= 1 + 6 \left( - \frac{1}{2} x^2 + \frac{1}{24} x^4 \right) + \frac{6(5)}{2} \left( - \frac{1}{2} x^2 + \frac{1}{24} x^4 \right)^2 + \ldots \\ &= 1 - 3x^2 + \frac{1}{4}x^4 + 15 \left( \frac{1}{4} x^4 + \ldots \right) + \ldots \\ &= 1 - 3 x^2 + 4 x^4 + \ldots \; \blacksquare \end{align*}
cos
6
x
=
(
1
−
2
1
x
2
+
24
1
x
4
+
…
)
6
=
1
+
6
(
−
2
1
x
2
+
24
1
x
4
)
+
2
6
(
5
)
(
−
2
1
x
2
+
24
1
x
4
)
2
+
…
=
1
−
3
x
2
+
4
1
x
4
+
15
(
4
1
x
4
+
…
)
+
…
=
1
−
3
x
2
+
4
x
4
+
…
■
(iia)
∫
0
a
g
(
x
)
d
x
≈
∫
0
a
(
1
−
3
x
2
+
4
x
4
)
d
x
=
[
x
−
x
3
+
4
5
x
5
]
0
a
=
a
−
a
3
+
4
5
a
5
■
\begin{align*} & \int_0^a g(x) \; \mathrm{d} x \\ &\approx \int_0^a \left( 1 - 3 x^2 + 4 x^4 \right) \; \mathrm{d} x \\ &= \left[ x - x^3 + \frac{4}{5}x^5 \right]_0^a \\ &= a - a^3 + \frac{4}{5}a^5 \; \blacksquare \end{align*}
∫
0
a
g
(
x
)
d
x
≈
∫
0
a
(
1
−
3
x
2
+
4
x
4
)
d
x
=
[
x
−
x
3
+
5
4
x
5
]
0
a
=
a
−
a
3
+
5
4
a
5
■
When
a
=
1
4
π
,
{a=\frac{1}{4}\pi,}
a
=
4
1
π
,
∫
0
π
4
g
(
x
)
d
x
≈
π
4
−
(
π
4
)
3
+
4
5
(
π
4
)
5
≈
0.540
(3 sf)
■
\begin{align*} & \int_0^\frac{\pi}{4} g(x) \; \mathrm{d} x \\ &\approx \frac{\pi}{4} - \left( \frac{\pi}{4} \right)^3 + \frac{4}{5} \left( \frac{\pi}{4} \right)^5 \\ &\approx 0.540 \textrm{ (3 sf)} \; \blacksquare \end{align*}
∫
0
4
π
g
(
x
)
d
x
≈
4
π
−
(
4
π
)
3
+
5
4
(
4
π
)
5
≈
0.540
(3 sf)
■
(iib)
Using a GC,
∫
0
π
4
g
(
x
)
d
x
≈
0.475
(3 sf)
■
\int_0^{\frac{\pi}{4}} g(x) \; \mathrm{d}x \approx 0.475 \textrm{ (3 sf)} \; \blacksquare
∫
0
4
π
g
(
x
)
d
x
≈
0.475
(3 sf)
■
Back to top ▲