2012 H2 Mathematics Paper 1 Question 4

Maclaurin Series

Answers

1+θ+32θ2{1 + \theta + \frac{3}{2} \theta^2}

Full solutions

(i)

By Sine Rule,
ACBC=sin34πsin(π34πθ)AC1=22sin(14πθ)AC=22sin14πcosθcos14πsinθ=2222cosθ22sinθ=1cosθsinθ  \begin{align*} \frac{AC}{BC} &= \frac{\sin \frac{3}{4}\pi}{\sin \left( \pi - \frac{3}{4}\pi - \theta \right)} \\ \frac{AC}{1} &= \frac{\frac{\sqrt{2}}{2}}{\sin \left( \frac{1}{4}\pi - \theta \right)} \\ AC &= \frac{\frac{\sqrt{2}}{2}}{\sin \frac{1}{4}\pi \cos \theta - \cos \frac{1}{4}\pi \sin \theta} \\ &= \frac{\frac{\sqrt{2}}{2}}{\frac{\sqrt{2}}{2}\cos \theta - \frac{\sqrt{2}}{2} \sin \theta} \\ &= \frac{1}{\cos \theta - \sin \theta} \; \blacksquare \end{align*}

(ii)

AC=1cosθsinθ1(112θ2)θ=(1θ12θ2)11+(1)(θ12θ2)+(1)(2)2(θ12θ2)21+θ+12θ2+θ2=1+θ+32θ2  \begin{align*} AC &= \frac{1}{\cos \theta - \sin \theta} \\ &\approx \frac{1}{\left(1 - \frac{1}{2} \theta^2\right) - \theta} \\ &= \left( 1 - \theta - \frac{1}{2} \theta^2 \right)^{-1} \\ &\approx 1 + (-1)\left( - \theta - \frac{1}{2} \theta^2 \right) + \frac{(-1)(-2)}{2} \left( - \theta - \frac{1}{2} \theta^2 \right)^2 \\ &\approx 1 + \theta + \frac{1}{2}\theta^2 + \theta^2 \\ &= 1 + \theta + \frac{3}{2} \theta^2 \; \blacksquare \end{align*}