2014 H2 Mathematics Paper 1 Question 8

Maclaurin Series

Answers

sin1(x3)+C{\sin^{-1} \left(\frac{x}{3}\right) +C}
13+154x2+1648x4+534992x6+\frac{1}{3} + \frac{1}{54} x^2 + \frac{1}{648} x^4 + \frac{5}{34992} x^6 + \ldots
13x+1162x3+13240x5+5244944x7+\frac{1}{3} x + \frac{1}{162} x^3 + \frac{1}{3240} x^5 + \frac{5}{244944} x^7 + \ldots

Full solutions

(i)

f(x)  dx=19x2  dx=sin1(x3)+C  \begin{align*} & \int f(x) \; \mathrm{d}x \\ & = \int \frac{1}{\sqrt{9-x^2}} \; \mathrm{d}x \\ & = \sin^{-1} \left(\frac{x}{3}\right) +C \; \blacksquare \end{align*}

(ii)

f(x)=(9x2)12=912(1x29)12=13(112(x29)=13(1+12(121)2(x29)2=13(1++12(121)(122)3!(x29)3=13(1+++)=13(1+x218+38181x4+5161729x6+)=13+154x2+1648x4+534992x6+  \begin{align*} & f(x) \\ & = \left( 9-x^2 \right)^{- \frac{1}{2}} \\ & = 9^{- \frac{1}{2}} \left( 1 - \frac{x^2}{9} \right)^{- \frac{1}{2}} \\ & = \frac{1}{3} \Bigg( 1 - \frac{1}{2} \left( - \frac{x^2}{9} \right) \\ & \phantom{= \frac{1}{3} \Bigg( 1 -} + \frac{- \frac{1}{2}\left(- \frac{1}{2}-1\right)}{2} \left( - \frac{x^2}{9} \right)^2 \\ & \phantom{= \frac{1}{3} \Bigg( 1 - +} + \frac{- \frac{1}{2}\left(- \frac{1}{2}-1\right)\left(- \frac{1}{2}-2\right)}{3!} \left( - \frac{x^2}{9} \right)^3 \\ & \phantom{= \frac{1}{3} \Bigg( 1 - + +} +\ldots \Bigg) \\ & = \frac{1}{3} \left( 1 + \frac{x^2}{18} + \frac{3}{8} \cdot \frac{1}{81} x^4 + \frac{5}{16} \cdot \frac{1}{729}x^6 + \ldots \right) \\ &= \frac{1}{3} + \frac{1}{54} x^2 + \frac{1}{648} x^4 + \frac{5}{34992} x^6 + \ldots \; \blacksquare \end{align*}

(iii)

sin1(13x)=f(x)  dx=(13+154x2+1648x4+534992x6+)  dx=13x+1162x3+13240x5+5244944x7+  \begin{align*} & \sin^{-1} \left({\textstyle \frac{1}{3}x}\right) \\ &= \int f(x) \; \mathrm{d}x \\ &= \int \left( \frac{1}{3} + \frac{1}{54} x^2 + \frac{1}{648} x^4 + \frac{5}{34992} x^6 + \ldots \right) \; \mathrm{d}x \\ &= \frac{1}{3} x + \frac{1}{162} x^3 + \frac{1}{3240} x^5 + \frac{5}{244944} x^7 + \ldots \; \blacksquare \end{align*}
We note that sin1(0)=0{\sin^{-1} (0) = 0} so the constant of integration C=0{C=0}