2010 H2 Mathematics Paper 1 Question 2

Maclaurin Series

Answers

1+3x+52x2{1 + 3 x + \frac{5}{2} x^2}
n=94{n=\frac{9}{4}}

Full solutions

(i)

ex(1+sin2x)=(1+x+12x2+)(1+2x+)=1+3x+52x2+  \begin{align*} & \mathrm{e}^x (1 + \sin 2x) \\ &= \left( 1 + x + \frac{1}{2} x^2 + \ldots \right) \left( 1 + 2 x + \ldots \right) \\ &= 1 + 3 x + \frac{5}{2} x^2 + \ldots \; \blacksquare \end{align*}

(ii)

(1+43x)n=1+43nx+n(n1)2169x2+\begin{align*} & \left( 1 + \frac{4}{3}x \right )^n \\ & = 1 + \frac{4}{3}nx + \frac{n(n-1)}{2} \frac{16}{9}x^2 + \ldots \\ \end{align*}
Since the first two terms are equal,
43n=3n=94  \begin{align*} \frac{4}{3} n &= 3 \\ n &= \frac{9}{4} \; \blacksquare \end{align*}
Third term of (1+43x)n=94(941)2169x2=52x2\begin{align*} & \textrm{Third term of } \left( {\textstyle 1 + \frac{4}{3}x} \right )^n \\ & = \frac{\frac{9}{4}\left(\frac{9}{4}-1\right)}{2} \frac{16}{9}x^2 \\ &= \frac{5}{2}x^2 \end{align*}
Hence the third terms in each of these series are equal {\blacksquare}