2016 H2 Mathematics Paper 1 Question 8

Maclaurin Series

Answers

f(x)=2a2y+2a3y{f''(x)=2a^2y+2a^3y}
f(x)=2a3(1+4y2+3y4){f'''(x)}\allowbreak{=2a^3(1+4y^2+3y^4)}
1+2ax+2a2x2+8a33x3{1 + 2ax + 2a^2x^2 + \frac{8a^3}{3}x^3}
tan2x=2x+83x3+{\tan 2x = 2 x + \frac{8}{3} x^3 + \ldots}

Full solutions

(i)

f(x)=tan(ax+b)f(x)=asec2(ax+b)=a(1+tan2(ax+b))=a(1+y2)=a+ay2  \begin{align*} f(x) &= \tan (ax+b) \\ f'(x) &= a \sec^2 (ax+b) \\ &= a \left( 1 + \tan^2 (ax+b) \right) \\ &= a (1+y^2) \\ &= a + ay^2 \; \blacksquare \end{align*}
Differentiating implicitly w.r.t. x,{x,}
f(x)=2aydydx=2ay(a+ay2)=2a2y+2a2y3  \begin{align*} f''(x) &= 2ay \frac{\mathrm{d}y}{\mathrm{d}x} \\ &= 2ay (a+ay^2) \\ & = 2a^2y + 2a^2y^3 \; \blacksquare \end{align*}
f(x)=2a2dydx+6a2y2dydx=2a2(a+ay2)+6a2y2(a+ay2)=2a3+2a3y2+6a3y2+6a3y4=2a3(1+4y2+3y4)  \begin{align*} f'''(x) &= 2a^2 \frac{\mathrm{d}y}{\mathrm{d}x} + 6a^2 y^2 \frac{\mathrm{d}y}{\mathrm{d}x} \\ &= 2a^2 (a+ay^2) + 6a^2 y^2 (a+ay^2) \\ &= 2a^3 + 2a^3y^2 + 6a^3y^2 + 6a^3y^4 \\ &= 2a^3 \left( 1 + 4y^2+3y^4 \right) \; \blacksquare \end{align*}

(ii)

When b=14π,{\frac{1}{4}\pi,}
f(0)=tan14π=1f(0)=a+a(1)2=2af(0)=2a2(1)+2a2(1)3=4a2f(0)=2a3(1+4(1)2+3(1)4)=16a3\begin{align*} f(0) &= \tan \frac{1}{4}\pi \\ &= 1 \\ f'(0) &= a + a(1)^2 \\ &= 2a \\ f''(0) &= 2a^2(1)+2a^2(1)^3 \\ &= 4a^2 \\ f'''(0) &= 2a^3 \left(1+4(1)^2+3(1)^4\right) \\ &= 16a^3 \end{align*}
Maclaurin series for f(x):{f(x):}
f(x)=1+2ax+4a22x2+16a33!x3+=1+2ax+2a2x2+8a33x3+  \begin{align*} f(x) &= 1 + 2ax + \frac{4a^2}{2}x^2 + \frac{16a^3}{3!}x^3 + \ldots \\ &= 1 + 2ax + 2a^2x^2 + \frac{8a^3}{3}x^3 + \ldots \; \blacksquare \end{align*}

(iii)

When a=2{a=2} and b=0,{b=0,}
f(0)=tan0=0f(0)=2+2(0)2=2f(0)=2a2(0)+2a2(0)3=0f(0)=2(2)3(1+4(0)2+3(0)4)=16\begin{align*} f(0) &= \tan 0 \\ &= 0 \\ f'(0) &= 2+2(0)^2 \\ &= 2 \\ f''(0) &= 2a^2(0) + 2a^2(0)^3 \\ &= 0 \\ f'''(0) &= 2(2)^3(1+4(0)^2+3(0)^4) \\ &= 16 \end{align*}
Maclaurin series for tan2x:{\tan 2x:}
f(x)=0+2x+0x2+163!x3+=2x+83x3+  \begin{align*} f(x) &= 0 + 2x + 0x^2 + \frac{16}{3!}x^3 + \ldots \\ &= 2x + \frac{8}{3}x^3 + \ldots \; \blacksquare \end{align*}