2019 H2 Mathematics Paper 2 Question 4

Maclaurin Series

Answers

f(x)=2sec2xtan2x{f'(x)=2 \sec 2x \tan 2x}
f(x)=4sec2xtan22x+4sec32xf''(x)\allowbreak{=4\sec 2x \tan^2 2x} \allowbreak {+ 4 \sec^3 2x}
0.02001{0.02001}
0.02001{0.02001}
Since 0x0.02,{0 \leq x \leq 0.02, } the value of x{x} is small so the terms x3{x^3} and above omitted in the Maclaurin series in (i) and (ii) are negligible.
Hence the answers to part (ii) and (iii) are close to each other and the approximation is accurate.
g(x)=cosec2x=1sin2x{g(x) = \cosec 2x = \frac{1}{\sin 2x}} so g(0){g(0)} is undefined. Hence a Maclaurin series cannot be found.

Full solutions

(i)

f(x)=sec2xf(x)=2sec2xtan2x  f(x)=4sec2xtan22x+4sec32x  \begin{align*} f(x) &= \sec 2x \\ f'(x) &= 2 \sec 2x \tan 2x \; \blacksquare \\ f''(x) &= 4 \sec 2x \tan^2 2x + 4 \sec^3 2x \; \blacksquare \end{align*}
f(0)=sec2(0)=1f(0)=2sec2(0)tan2(0)=0f(0)=0+4sec32(0)=4\begin{align*} f(0) &= \sec 2(0) \\ &= 1 \\ f'(0) &= 2 \sec 2(0) \tan 2(0) \\ &= 0 \\ f''(0) &= 0 + 4 \sec^3 2(0) \\ &= 4\end{align*}
Maclaurin series for f(x):{f(x):}
f(x)=1+0x+42!x2+=1+2x2+  \begin{align*} f(x) &= 1 + 0x + \frac{4}{2!}x^2 + \ldots \\ &= 1 + 2x^2 + \ldots \; \blacksquare \end{align*}

(ii)

00.02sec2x  dx00.021+2x2  dx=[x+2x33]00.02=0.02001 (5 dp)  \begin{align*} & \int_0^{0.02} \sec 2x \; \mathrm{d}x \\ & \approx \int_0^{0.02} 1 + 2x^2 \; \mathrm{d}x \\ & = \left[ x + \frac{2x^3}{3} \right]_0^{0.02} \\ & = 0.02001 \textrm{ (5 dp)} \; \blacksquare \end{align*}

(iii)

Using a GC,
00.02sec2x  dx0.02001 (5 dp)  \begin{align*} & \int_0^{0.02} \sec 2x \; \mathrm{d}x \\ & \approx 0.02001 \textrm{ (5 dp)} \; \blacksquare \end{align*}

(iv)

Since 0x0.02,{0 \leq x \leq 0.02, } the value of x{x} is small so the terms x3{x^3} and above omitted in the Maclaurin series in (i) and (ii) are negligible.
Hence the answers to part (ii) and (iii) are close to each other and the approximation is accurate. {\blacksquare}

(v)

g(x)=cosec2x=1sin2x{g(x) = \cosec 2x = \frac{1}{\sin 2x}} so g(0){g(0)} is undefined. Hence a Maclaurin series cannot be found. {\blacksquare}