ax(1+bx)c=ax(1+cbxax(1++2c(c−1)(bx)2ax(1+++3!c(c−1)(c−2)(bx)3ax(1++++…)=ax+abcx2+2ab2c(c−1)x3+3!ab3c(c−1)(c−2)x4+… Given that the first three terms are equal,
a=2■ 2bc22b2c(c−1)=−2=38 From
(1),b=−c1 Substituting
(3) into
(2):cc−13c−3c=38=8c=−53■ b=35■ Coefficient of x4=3!ab3c(c−1)(c−2)=−27104■