2007 H2 Mathematics Paper 2 Question 3

Maclaurin Series

Answers

1+nx+n(n1)2x2+n(n1)(n2)6x3+1+nx+\frac{n(n-1)}{2}x^2 + \frac{n(n-1)(n-2)}{6}x^3 + \ldots
83x+38716x21151128x3+8 - 3 x + \frac{387}{16} x^2 - \frac{1151}{128} x^3 + \ldots
{xR:12<x<12}{\{ x\in\mathbb{R}: -\frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}} \}}

Full solutions

(i)

Let f(x)=(1+x)nf(x)=n(1+x)n1f(x)=n(n1)(1+x)n2f(x)=n(n1)(n2)(1+x)n3\begin{align*} \textrm{Let } f(x) &= (1+x)^n \\ f'(x) &= n(1+x)^{n-1} \\ f''(x) &= n(n-1)(1+x)^{n-2} \\ f'''(x) &= n(n-1)(n-2)(1+x)^{n-3} \\ \end{align*}
f(0)=1f(0)=nf(0)=n(n1)f(0)=n(n1)(n2)\begin{align*} f(0) &= 1 \\ f'(0) &= n \\ f''(0) &= n(n-1) \\ f'''(0) &= n(n-1)(n-2) \\ \end{align*}
Hence the Maclaurin's series for (1+x)n:{(1+x)^n:}
(1+x)n=1+nx+n(n1)2x2+n(n1)(n2)6x3+  \begin{align*} & (1+x)^n \\ & = 1+nx+\frac{n(n-1)}{2}x^2 + \frac{n(n-1)(n-2)}{6}x^3 + \ldots \; \blacksquare \end{align*}

(ii)

(4x)32(1+2x2)32=432(1x4)32(1+32(2x2)+)=8(13x8+32(12)2x2=8(1+32(321)(322)6x3+)(1+3x2+)=8(138x+3128x2+11024x3)(1+3x2)+=8(138x+(3+3128)x2+(1102498)x3)+=83x+38716x21151128x3+  \begin{align*} & (4-x)^\frac{3}{2}(1+2x^2)^\frac{3}{2} \\ & = 4^{\frac{3}{2}}\left(1-\frac{x}{4}\right)^{\frac{3}{2}}\left( 1 + \frac{3}{2}(2x^2) + \ldots \right) \\ & = 8 \Bigg( 1- \frac{3x}{8} + \frac{\frac{3}{2}\left(\frac{1}{2}\right)}{2} x^2 \\ & \phantom{= 8 \Bigg( 1} + \frac{\frac{3}{2}\left(\frac{3}{2}-1\right)\left(\frac{3}{2}-2\right)}{6} x^3 + \ldots \Bigg) \left( 1 + 3 x^2 + \ldots \right) \\ & = 8 \left( 1 - \frac{3}{8} x + \frac{3}{128} x^2 + \frac{1}{1024} x^3 \right) \left(1 + 3 x^2 \right) + \ldots \\ &= 8 \Bigg( 1 -{\textstyle \frac{3}{8}}x + \left( {\textstyle 3 + \frac{3}{128}} \right)x^2 + \left( {\textstyle \frac{1}{1024} - \frac{9}{8}} \right)x^3 \Bigg) + \ldots \\ &= 8 - 3 x + \frac{387}{16} x^2 - \frac{1151}{128} x^3 + \ldots \; \blacksquare \end{align*}

(iii)

The expansion for (4x)32=432(1x4)32{(4-x)^{\frac{3}{2}}=4^{\frac{3}{2}}\left(1-\frac{x}{4}\right)^{\frac{3}{2}}} is valid for:
x4<14<x<4\begin{gather*} \left| -\frac{x}{4} \right| < 1 \\ -4 < x < 4 \end{gather*}
The expansion for (1+2x2)32{(1+2x^2)^{\frac{3}{2}}} is valid for:
2x2<112<x<12\begin{gather*} \left| 2x^2 \right| < 1 \\ -\frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}} \end{gather*}
Hence the set of values of x{x} for which the expansion in part (ii) is valid:
{xR:12<x<12}  \{ x\in\mathbb{R}: -\frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}} \} \; \blacksquare