Math Repository
about
topic
al
year
ly
Yearly
2013
P1 Q7
Topical
AP/GP
13 P1 Q7
2013 H2 Mathematics Paper 1 Question 7
Arithmetic and Geometric Progressions (APs, GPs)
Answers
(i)
A
=
1
,
B
=
6
,
C
=
−
1
,
D
=
1
{A=1,\;}\allowbreak {B=6,\;}\allowbreak {C=-1,\;}\allowbreak {D=1}
A
=
1
,
B
=
6
,
C
=
−
1
,
D
=
1
(iii)
12
{12}
12
pieces
Full solutions
(i)
u
n
=
p
128
(
2
3
)
n
−
1
=
p
\begin{gather*} u_n = p \\ 128 \left( \frac{2}{3} \right)^{n - 1} = p \\ \end{gather*}
u
n
=
p
128
(
3
2
)
n
−
1
=
p
ln
p
=
ln
(
128
(
2
3
)
n
−
1
)
=
ln
128
+
ln
(
2
3
)
n
−
1
=
ln
2
7
+
(
n
−
1
)
(
ln
2
−
ln
3
)
=
(
n
+
6
)
ln
2
+
(
−
n
+
1
)
ln
3
■
\begin{align*} \ln p &= \ln \left(128 \left( \frac{2}{3} \right)^{n - 1}\right) \\ &= \ln 128 + \ln \left(\frac{2}{3}\right)^{n-1} \\ &= \ln 2^7 + (n-1) \left( \ln 2 - \ln 3 \right) \\ &= (n+6)\ln 2 + (-n+1)\ln 3 \; \blacksquare \end{align*}
ln
p
=
ln
(
128
(
3
2
)
n
−
1
)
=
ln
128
+
ln
(
3
2
)
n
−
1
=
ln
2
7
+
(
n
−
1
)
(
ln
2
−
ln
3
)
=
(
n
+
6
)
ln
2
+
(
−
n
+
1
)
ln
3
■
A
=
1
,
B
=
6
,
C
=
−
1
,
D
=
1
■
{A=1,\;}\allowbreak {B=6,\;}\allowbreak {C=-1,\;}\allowbreak {D=1} \;\blacksquare
A
=
1
,
B
=
6
,
C
=
−
1
,
D
=
1
■
(ii)
Theoretical maximum total length
S
∞
=
a
1
−
r
=
128
1
−
2
3
=
384
\begin{align*} S_\infty &= \frac{a}{1-r} \\ &= \frac{128}{1-\frac{2}{3}} \\ &= 384 \end{align*}
S
∞
=
1
−
r
a
=
1
−
3
2
128
=
384
Hence the total length of string cut off can never be greater than
384
cm
■
{384 \textrm{ cm} \; \blacksquare}
384
cm
■
(iii)
S
n
>
380
a
(
1
−
r
n
)
1
−
r
>
380
128
(
1
−
(
2
3
)
n
)
1
−
2
3
>
380
1
−
(
2
3
)
n
>
95
96
(
2
3
)
n
<
1
96
ln
(
2
3
)
n
<
ln
1
96
n
>
ln
1
96
ln
2
3
n
>
11.26
\begin{align*} S_n &> 380 \\ \frac{a\left(1-r^{n}\right)}{1-r} &> 380 \\ \frac{128\left(1-\left(\frac{2}{3}\right)^n\right)}{1-\frac{2}{3}} &> 380 \\ 1-\left(\frac{2}{3}\right)^n &> \frac{95}{96} \\ \left(\frac{2}{3}\right)^n &< \frac{1}{96} \\ \ln \left(\frac{2}{3}\right)^n &< \ln \frac{1}{96} \\ n &> \frac{\ln \frac{1}{96}}{\ln \frac{2}{3}} \\ n &> 11.26 \\ \end{align*}
S
n
1
−
r
a
(
1
−
r
n
)
1
−
3
2
128
(
1
−
(
3
2
)
n
)
1
−
(
3
2
)
n
(
3
2
)
n
ln
(
3
2
)
n
n
n
>
380
>
380
>
380
>
96
95
<
96
1
<
ln
96
1
>
ln
3
2
ln
96
1
>
11.26
Hence the number of pieces that must be cut is
12
■
{12 \; \blacksquare}
12
■
Back to top ▲