2013 H2 Mathematics Paper 1 Question 6

Vectors I: Basics, Dot and Cross Products

Answers

ON=47a+37c{\overrightarrow{ON} = \frac{4}{7}\mathbf{a} + \frac{3}{7}\mathbf{c}}
λ=87μ{\lambda = \frac{8}{7}\mu}

Full solutions

(i)

An equation for the plane passing through O,A{O,A} and B{B} is:
r=0+k1a+k2b, for k1,k2R\mathbf{r} = \mathbf{0} + k_1\mathbf{a} + k_2\mathbf{b}, \textrm{ for } k_1,k_2 \in \mathbb{R}
Since O,A,B{O, A, B} and C{C} lies in the same plane, c{\mathbf{c}} satisfies the equation of the plane and hence be expressed as c=λa+μb  {\mathbf{c} = \lambda \mathbf{a} + \mu \mathbf{b} \; \blacksquare}

(ii)

By Ratio Theorem
ON=3c+4a7=47a+37c  \begin{align*} \overrightarrow{ON} &= \frac{3\mathbf{c}+4\mathbf{a}}{7}\\ & = \frac{4}{7}\mathbf{a} + \frac{3}{7}\mathbf{c} \; \blacksquare \end{align*}

(iii)

Area of ONC=12ON×OC=12(47a+37c)×c=1247a×c=27a×(λa+μb)=27μa×b=27μa×b\begin{align*} & \textrm{Area of } \triangle ONC \\ &= \frac{1}{2} \left| \overrightarrow{ON} \times \overrightarrow{OC} \right| \\ &= \frac{1}{2} \left| \left( \frac{4}{7}\mathbf{a} + \frac{3}{7}\mathbf{c}\right) \times \mathbf{c} \right| \\ &= \frac{1}{2} \left| \frac{4}{7} \mathbf{a} \times \mathbf{c} \right| \\ &= \frac{2}{7} \Big | \mathbf{a} \times (\lambda \mathbf{a} + \mu \mathbf{b}) \Big | \\ &= \frac{2}{7} \left| \mu \mathbf{a} \times \mathbf{b} \right| \\ &= \frac{2}{7} | \mu| \left| \mathbf{a} \times \mathbf{b} \right| \\ \end{align*}
OM=12b{\overrightarrow{OM} = \frac{1}{2}\mathbf{b}}
Area of OMC=12OM×OC=1212b×c=14b×(λa+μb)=14λb×a=14λa×b\begin{align*} & \textrm{Area of } \triangle OMC \\ &= \frac{1}{2} \left| \overrightarrow{OM} \times \overrightarrow{OC} \right| \\ &= \frac{1}{2} \left| \frac{1}{2}\mathbf{b} \times \mathbf{c} \right| \\ &= \frac{1}{4} \Big| \mathbf{b} \times (\lambda \mathbf{a} + \mu \mathbf{b}) \Big| \\ &= \frac{1}{4} \left| \lambda \mathbf{b} \times \mathbf{a} \right| \\ &= \frac{1}{4} |\lambda| \left| \mathbf{a} \times \mathbf{b} \right| \\ \end{align*}
Since the areas of the triangles are equal and λ{\lambda} and mu{mu} are positive,
27μ=14λλ=87μ  \begin{align*} \frac{2}{7}\mu &= \frac{1}{4}\lambda \\ \lambda &= \frac{8}{7}\mu \; \blacksquare \end{align*}