2013 H2 Mathematics Paper 1 Question 9
Sigma Notation
Answers
Out of syllabus
f(r)−f(r−1)=6r261n(n+1)(2n+1) 21n(n+1)(n2+n+1)+21n(n+1)(2n+1)+24n Full solutions
(i)
Out of syllabus
(ii)
f(r−1)=2(r−1)3+3(r−1)2+(r−1)+24=2(r3−3r2+3r−1)+3(r2−2r+1)+(r−1)+24=2r3−3r2+r+24 f(r)−f(r−1)=2r3+3r2+r+24−(2r3−3r2+r+24)=6r2■ r=1∑nr2=r=1∑n6f(r)−f(r−1)=61++f(1)f(2)f(3)f(n−2)f(n−1)f(n)−−−⋯−−−f(0)f(1)f(2)f(n−3)f(n−2)f(n−1)=61(f(n)−f(0))=61(2n3+3n2+n+24−24)=61n(2n2+3n+1)=61n(n+1)(2n+1)■ (iii)
Result from (i):
r=1∑nr(2r2+1)=21n(n+1)(n2+n+1) r=1∑nf(r)=r=1∑n(2r3+3r2+r+24)=r=1∑nr(2r3+1)+3r=1∑nr2+r=1∑n24=21n(n+1)(n2+n+1)+21n(n+1)(2n+1)+24n■