2013 H2 Mathematics Paper 2 Question 4

Vectors II: Lines and Planes

Answers

40.4{40.4^\circ}
l:r=(16230)+λ(7106),λR{l: \mathbf{r} = \begin{pmatrix} - \frac{1}{6} \\ - \frac{2}{3} \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 7 \\ 10 \\ 6 \end{pmatrix}, \lambda \in \mathbb{R}}
c=49{c=-49} or c=3513{c=\frac{35}{13}}

Full solutions

(i)

n1n2=n1n2cosθ\left|\mathbf{n_1} \cdot \mathbf{n_2}\right| = \left| \mathbf{n_1} \right| \left| \mathbf{n_2} \right| \cos \theta
(221)(632)=(221)(632)cosθ16=(3)(7)cosθ\begin{align*} \left|\begin{pmatrix} 2 \\ - 2 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} - 6 \\ 3 \\ 2 \end{pmatrix} \right| &= \left| \begin{pmatrix} 2 \\ - 2 \\ 1 \end{pmatrix} \right| \left| \begin{pmatrix} - 6 \\ 3 \\ 2 \end{pmatrix} \right| \cos \theta \\ \left|- 16 \right| &= (3) (7) \cos \theta \end{align*}
cosθ=16(3)(7)θ=40.4  \begin{align*} \cos \theta &= \frac{16}{(3)(7)} \\ \theta &= 40.4^\circ \; \blacksquare \end{align*}

(ii)

p1:2x2y+z=1p2:6x+3y+2z=1\begin{align} \qquad &p_1: 2 x - 2 y + z = 1 \\ \qquad &p_2: - 6 x + 3 y + 2 z = - 1 \end{align}
Using a GC, equation for l:{l:}
r=(16230)+λ(7106),λR  \mathbf{r} = \begin{pmatrix} - \frac{1}{6} \\ - \frac{2}{3} \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 7 \\ 10 \\ 6 \end{pmatrix}, \lambda \in \mathbb{R} \; \blacksquare

(iii)

Let B(0,0,1){B \left( 0, 0, 1 \right)} and C(0,1,1){C \left( 0, - 1, 1 \right)} denote points on p1,p2{p_1,p_2} respectively
Distance from A{A} to p1{p_1}
=BAn^1{=\left|\overrightarrow{BA} \cdot \mathbf{\hat{n}_1} \right|}
=(43c1)(221)(221){\displaystyle =\left|\begin{pmatrix}4\\3\\c-1\end{pmatrix} \cdot \frac{\begin{pmatrix} 2 \\ - 2 \\ 1 \end{pmatrix}}{\left| \begin{pmatrix} 2 \\ - 2 \\ 1 \end{pmatrix} \right|} \right|}
=86+c13{\displaystyle =\left|\frac{8 - 6 + c - 1}{3} \right|}
=c+13{\displaystyle = \frac{\left|c+1\right|}{3}}
Distance from A{A} to p2{p_2}
=CAn^2{=\left|\overrightarrow{CA} \cdot \mathbf{\hat{n}_2} \right|}
=(44c+1)(632)(632){\displaystyle =\left|\begin{pmatrix}4\\4\\c+1\end{pmatrix} \cdot \frac{\begin{pmatrix} - 6 \\ 3 \\ 2 \end{pmatrix}}{\left| \begin{pmatrix} - 6 \\ 3 \\ 2 \end{pmatrix} \right|} \right|}
=24+12+2c27{\displaystyle =\left|\frac{- 24 + 12 + 2c - 2}{7} \right|}
=2c147{\displaystyle = \frac{\left|2c-14\right|}{7}}
Since A{A} is equidistant from p1{p_1} and p2,{p_2,}
c+13=2c1477c+1=32c14\begin{align*} \frac{\left|c+1\right|}{3} &= \frac{\left|2c-14\right|}{7} \\ 7\left|c+1\right| &= 3\left|2c-14\right| \end{align*}
7c+7=6c42or7c+7=(6x42)c=49orc=3513  \begin{align*} 7c + 7 = 6c - 42 &\quad \textrm{or} \quad 7c + 7 = -(6x-42) \\ c=-49 &\quad \textrm{or} \quad c = \frac{35}{13} \; \blacksquare \end{align*}