2013 H2 Mathematics Paper 2 Question 11

Permutations and Combinations (P&C)

Answers

4005070.789{\frac{400}{507}\approx0.789}
49{\frac{4}{9}}
120160840.197{\frac{1201}{6084}\approx0.197}
122565910.186{\frac{1225}{6591}\approx0.186}

Full solutions

(i)

Probability required
=(263)×3!×(92)×2!263×92=400507  \begin{align*} &= \frac{{26 \choose 3}\times 3! \times {9 \choose 2}\times 2!}{26^3 \times 9^2} \\ &= \frac{400}{507} \; \blacksquare \end{align*}

(ii)

Let x{x} denote the probability that the second digit is higher than the first digit
We note that the probability that the first digit is higher than the second digit is also x{x}
When picking the digits, either the second is higher than the first, or the first is higher than the second, or the two digits are the same
Let D{D} denote the event that the two digits are the same
P(D)=(91)92=19\begin{align*} \textrm{P}\left(D\right) &= \frac{{9 \choose 1}}{9^2} \\ &= \frac{1}{9} \end{align*}
P(1st>2nd)+P(2nd>1st)+P(digits same)=1\textrm{P}\left(1^{\textrm{st}} > 2^{\textrm{nd}}\right) + \textrm{P}\left(2^{\textrm{nd}} > 1^{\textrm{st}}\right) + \textrm{P}\left(\textrm{digits same}\right) = 1
x+x+19=12x=119x=49  \begin{align*} x + x + \frac{1}{9} &= 1 \\ 2x &= 1-\frac{1}{9} \\ x &= \frac{4}{9} \; \blacksquare \end{align*}

(iii)

Let L{L} denote the event that exactly two letters are the same
P(L)=(262)×2!×3!2!263=75676\begin{align*} \textrm{P}\left(L\right) &= \frac{{26 \choose 2}\times 2!\times \frac{3!}{2!}}{26^3} \\ &= \frac{75}{676} \end{align*}
Note that the events D{D} and L{L} independent so
P(LD)=P(L)×P(D)=75676×19=252028\begin{align*} \textrm{P}\left(L \cap D\right) &= \textrm{P}\left(L\right) \times \textrm{P}\left(D\right) \\ &= \frac{75}{676} \times \frac{1}{9} \\ &= \frac{25}{2028} \end{align*}
The event required is represented by (LD)(LD){(L \cap D') \cup (L' \cap D)}
P((LD)(LD))=P(LD)P(LD)=P(L)+P(D)2P(LD)=75676+192(252028)=12016084  \begin{align*} & \textrm{P}\Big( (L \cap D') \cup (L' \cap D) \Big) \\ &= \textrm{P}\left(L \cup D\right) - \textrm{P}\left(L \cap D\right) \\ &= \textrm{P}\left(L\right) + \textrm{P}\left(D\right) - 2 \textrm{P}\left(L \cap D\right) \\ &= \frac{75}{676} + \frac{1}{9} - 2\left(\frac{25}{2028}\right) \\ &= \frac{1201}{6084} \; \blacksquare \end{align*}

(iv)

Case 1: Exactly 1 vowel, a repeated consonant and exactly one even digit
Probability of this case
=(51)(211)3!2!×(51)(41)2!263×92=17519773\begin{align*} & = \frac{{5 \choose 1}{21 \choose 1} \frac{3!}{2!}\times{5\choose 1}{4 \choose 1} 2!}{26^3 \times 9^2} \\ & = \frac{175}{19773} \\ \end{align*}
Case 2: Exactly 1 vowel, 2 distinct consonant and exactly one even digit
Probability of this case
=(51)(212)3!×(51)(41)2!263×92=350019773\begin{align*} & = \frac{{5 \choose 1}{21 \choose 2}3!\times{5\choose 1}{4 \choose 1} 2!}{26^3 \times 9^2} \\ & = \frac{3500}{19773} \\ \end{align*}
Required probability
=17519773+350019773=12256591  \begin{align*} & = \frac{175}{19773} + \frac{3500}{19773} \\ &= \frac{1225}{6591} \; \blacksquare \end{align*}