Math Repository
about
topic
al
year
ly
Yearly
2013
P2 Q1
Topical
Functions
13 P2 Q1
2013 H2 Mathematics Paper 2 Question 1
Functions
Answers
(i)
The composite function
f
g
{fg}
f
g
does not exist since
R
g
⊈
D
f
{R_g \not \subseteq D_f}
R
g
⊆
D
f
(ii)
g
f
(
x
)
=
−
3
−
3
x
1
−
x
{gf(x)=\frac{-3-3x}{1-x}}
g
f
(
x
)
=
1
−
x
−
3
−
3
x
(
g
f
)
−
1
(
5
)
=
4
{(gf)^{-1}(5)=4}
(
g
f
)
−
1
(
5
)
=
4
Full solutions
(i)
R
g
=
(
−
∞
,
∞
)
D
f
=
(
−
∞
,
1
)
∪
(
1
,
∞
)
\begin{align*} R_g &= (-\infty, \infty) \\ D_f &= (-\infty, 1) \cup (1, \infty) \\ \end{align*}
R
g
D
f
=
(
−
∞
,
∞
)
=
(
−
∞
,
1
)
∪
(
1
,
∞
)
Hence the composite function
f
g
{fg}
f
g
does not exist because
R
g
⊈
D
f
■
{R_g \not \subseteq D_f \; \blacksquare}
R
g
⊆
D
f
■
(ii)
g
f
(
x
)
=
g
(
2
+
x
1
−
x
)
=
1
−
2
(
2
+
x
1
−
x
)
=
1
−
4
+
2
x
1
−
x
=
1
−
x
−
4
−
2
x
1
−
x
=
−
3
−
3
x
1
−
x
■
\begin{align*} gf(x) &= g\left( \frac{2+x}{1-x} \right) \\ &= 1 - 2\left( \frac{2+x}{1-x} \right) \\ &= 1 - \frac{4+2x}{1-x} \\ &= \frac{1-x-4-2x}{1-x}\\ &= \frac{-3-3x}{1-x} \; \blacksquare \end{align*}
g
f
(
x
)
=
g
(
1
−
x
2
+
x
)
=
1
−
2
(
1
−
x
2
+
x
)
=
1
−
1
−
x
4
+
2
x
=
1
−
x
1
−
x
−
4
−
2
x
=
1
−
x
−
3
−
3
x
■
Let
x
=
(
g
f
)
−
1
(
5
)
g
f
(
x
)
=
5
−
3
−
3
x
1
−
x
=
5
−
3
−
3
x
=
5
−
5
x
2
x
=
8
x
=
4
\begin{align*} \textrm{Let } \qquad x &= (gf)^{-1}(5) \\ gf(x) &= 5 \\ \frac{-3-3x}{1-x} &= 5 \\ -3-3x &= 5 - 5x \\ 2x &= 8 \\ x &= 4 \end{align*}
Let
x
g
f
(
x
)
1
−
x
−
3
−
3
x
−
3
−
3
x
2
x
x
=
(
g
f
)
−
1
(
5
)
=
5
=
5
=
5
−
5
x
=
8
=
4
(
g
f
)
−
1
(
5
)
=
4
■
(gf)^{-1}(5)=4 \; \blacksquare
(
g
f
)
−
1
(
5
)
=
4
■
Back to top ▲