2013 H2 Mathematics Paper 2 Question 8

Probability

Answers

0.24{0.24}
0.06{0.06}
0.26{0.26}

Full solutions

(i)

P(BA)=0.8P(BA)P(A)=0.8P(BA)=0.8×(1P(A))P(BA)=0.8×(10.7)P(BA)=0.24  \begin{align*} \textrm{P}\left(B \mid A'\right) &= 0.8 \\ \frac{\textrm{P}\left(B \cap A'\right)}{\textrm{P}\left(A'\right)} &= 0.8 \\ \textrm{P}\left(B \cap A'\right) &= 0.8 \times \Big(1 - \textrm{P}\left(A\right)\Big) \\ \textrm{P}\left(B \cap A'\right) &= 0.8 \times \left(1 - 0.7\right) \\ \textrm{P}\left(B \cap A'\right) &= 0.24 \; \blacksquare \end{align*}

(ii)

P(AB)=P(BA)+P(A)=0.24+0.7=0.94\begin{align*} \textrm{P}\left(A \cup B\right) &= \textrm{P}\left(B\cap A'\right) + \textrm{P}\left(A\right) \\ &= 0.24 + 0.7 \\ &= 0.94 \end{align*}
P(AB)=1P(AB)=10.94=0.06  \begin{align*} \textrm{P}\left(A' \cap B'\right) &= 1 - \textrm{P}\left(A \cup B\right) \\ &= 1 - 0.94 \\ &= 0.06 \; \blacksquare \end{align*}

(iii)

Let x{x} denote P(AB){\textrm{P}\left(A \cap B\right)}
P(AB)=0.88P(AB)P(B)=0.880.7x1(0.24+x)=0.88\begin{align*} \textrm{P}\left(A \mid B'\right) &= 0.88 \\ \frac{\textrm{P}\left(A \cap B'\right)}{\textrm{P}\left(B'\right)} &= 0.88 \\ \frac{0.7-x}{1-(0.24+x)} &= 0.88 \\ \end{align*}
Hence P(AB)=x=0.26  {\textrm{P}\left(A \cap B\right) = x = 0.26 \; \blacksquare}