Math Repository
about
topic
al
year
ly
Yearly
2015
P2 Q12
Topical
Normal
15 P2 Q12
2015 H2 Mathematics Paper 2 Question 12
The Normal Distribution
Answers
(i)
0.0127
{0.0127}
0.0127
(ii)
0.0524
{0.0524}
0.0524
(iii)
0.742
{0.742}
0.742
Full solutions
(i)
Let
X
{X}
X
and
Y
{Y}
Y
denote the masses in grams of a randomly chosen apple and pear respectively
X
∼
N
(
300
,
2
0
2
)
Y
∼
N
(
200
,
1
5
2
)
\begin{align*} X &\sim \textrm{N}(300, 20^2 ) \\ Y &\sim \textrm{N}(200, 15^2 ) \\ \end{align*}
X
Y
∼
N
(
300
,
2
0
2
)
∼
N
(
200
,
1
5
2
)
X
1
+
X
2
+
…
+
X
5
∼
N
(
5
×
300
,
5
×
2
0
2
)
X
1
+
X
2
+
…
+
X
5
∼
N
(
1500
,
2000
)
\begin{align*} X_1 + X_2 + \ldots + X_5 &\sim \textrm{N}(5\times 300, 5 \times 20^2) \\ X_1 + X_2 + \ldots + X_{5} &\sim \textrm{N}( 1500, 2000 ) \end{align*}
X
1
+
X
2
+
…
+
X
5
X
1
+
X
2
+
…
+
X
5
∼
N
(
5
×
300
,
5
×
2
0
2
)
∼
N
(
1500
,
2000
)
P
(
X
1
+
X
2
+
…
+
X
5
>
1600
)
=
0.0127
(3 sf)
■
\begin{align*} & \textrm{P}(X_1 + X_2 + \ldots + X_{5} > 1600) \\ &= 0.0127 \textrm{ (3 sf)} \; \blacksquare \end{align*}
P
(
X
1
+
X
2
+
…
+
X
5
>
1600
)
=
0.0127
(3 sf)
■
(ii)
Y
1
+
Y
2
+
…
+
Y
8
∼
N
(
8
×
200
,
8
×
1
5
2
)
Y
1
+
Y
2
+
…
+
Y
8
∼
N
(
1600
,
1800
)
\begin{align*} Y_1 + Y_2 + \ldots + Y_8 &\sim \textrm{N}(8\times 200, 8 \times 15^2) \\ Y_1 + Y_2 + \ldots + Y_{8} &\sim \textrm{N}( 1600, 1800 ) \end{align*}
Y
1
+
Y
2
+
…
+
Y
8
Y
1
+
Y
2
+
…
+
Y
8
∼
N
(
8
×
200
,
8
×
1
5
2
)
∼
N
(
1600
,
1800
)
Let
U
=
X
1
+
…
+
X
5
{U=X_1+\ldots+X_5}
U
=
X
1
+
…
+
X
5
and
V
=
Y
1
+
…
+
Y
8
{V=Y_1+\ldots+Y_8}
V
=
Y
1
+
…
+
Y
8
U
−
V
∼
N
(
1500
−
1600
,
2000
+
1800
)
U
−
V
∼
N
(
−
100
,
3800
)
\begin{align*} U - V &\sim \textrm{N}(1500-1600, 2000+1800 ) \\ U-V &\sim \textrm{N}( -100, 3800 ) \\ \end{align*}
U
−
V
U
−
V
∼
N
(
1500
−
1600
,
2000
+
1800
)
∼
N
(
−
100
,
3800
)
P
(
U
>
V
)
=
P
(
U
−
V
>
0
)
=
0.0524
(3 sf)
■
\begin{align*} & \textrm{P}(U>V) \\ &= \textrm{P}(U-V > 0) \\ &= 0.0524 \textrm{ (3 sf)} \; \blacksquare \end{align*}
P
(
U
>
V
)
=
P
(
U
−
V
>
0
)
=
0.0524
(3 sf)
■
(iii)
0.85
U
∼
N
(
0.85
×
1500
,
0.8
5
2
×
2000
)
0.85
U
∼
N
(
1275
,
1445
)
0.9
V
∼
N
(
0.9
×
1600
,
0.
9
2
×
1800
)
0.9
V
∼
N
(
1440
,
1458
)
0.85
U
+
0.9
V
∼
N
(
1275
+
1440
,
1445
+
1458
)
0.85
U
+
0.9
V
∼
N
(
2715
,
2903
)
\begin{align*} 0.85 U &\sim \textrm{N}(0.85 \times 1500, 0.85^2 \times 2000 ) \\ 0.85 U &\sim \textrm{N}( 1275, 1445 ) \\ 0.9 V &\sim \textrm{N}(0.9 \times 1600, 0.9^2 \times 1800 ) \\ 0.9 V &\sim \textrm{N}( 1440, 1458 ) \\ 0.85 U + 0.9 V &\sim \textrm{N}(1275+1440, 1445+1458 ) \\ 0.85 U + 0.9 V &\sim \textrm{N}( 2715, 2903 ) \\ \end{align*}
0.85
U
0.85
U
0.9
V
0.9
V
0.85
U
+
0.9
V
0.85
U
+
0.9
V
∼
N
(
0.85
×
1500
,
0.8
5
2
×
2000
)
∼
N
(
1275
,
1445
)
∼
N
(
0.9
×
1600
,
0.
9
2
×
1800
)
∼
N
(
1440
,
1458
)
∼
N
(
1275
+
1440
,
1445
+
1458
)
∼
N
(
2715
,
2903
)
P
(
0.85
U
+
0.9
V
<
2750
)
=
0.742
(3 sf)
■
\begin{align*} & \textrm{P}(0.85 U + 0.9 V < 2750) \\ & = 0.742 \textrm{ (3 sf)} \; \blacksquare \end{align*}
P
(
0.85
U
+
0.9
V
<
2750
)
=
0.742
(3 sf)
■
Back to top ▲