Math Repository
about
topic
al
year
ly
Yearly
2015
P1 Q8
Topical
AP/GP
15 P1 Q8
2015 H2 Mathematics Paper 1 Question 8
Arithmetic and Geometric Progressions (APs, GPs)
Answers
(i)
[
59
,
77
]
{\left[ 59, 77 \right]}
[
59
,
77
]
(ii)
[
63.9
,
74.4
]
{\left[ 63.9, 74.4 \right]}
[
63.9
,
74.4
]
(iii)
11
s
{11 \textrm{ s}}
11
s
Full solutions
(i)
5400
≤
S
n
≤
6300
5400 \leq S_n \leq 6300
5400
≤
S
n
≤
6300
5400
≤
n
2
(
2
a
+
(
n
−
1
)
d
)
≤
6300
5400
≤
50
2
(
2
T
+
(
50
−
1
)
(
2
)
)
≤
6300
\begin{alignat*}{2} 5400 &\leq \frac{n}{2} \Big( 2a + \left( n - 1 \right) d \Big) &\leq 6300 \\ 5400 &\leq \frac{50}{2} \Big( 2T + (50-1)(2) \Big) &\leq 6300 \\ \end{alignat*}
5400
5400
≤
2
n
(
2
a
+
(
n
−
1
)
d
)
≤
2
50
(
2
T
+
(
50
−
1
)
(
2
)
)
≤
6300
≤
6300
5400
≤
50
T
+
2450
≤
6300
59
≤
T
≤
77
\begin{gather*} 5400 \leq 50T + 2450 \leq 6300 \\ 59 \leq T \leq 77 \\ \end{gather*}
5400
≤
50
T
+
2450
≤
6300
59
≤
T
≤
77
Set of values of
T
=
[
59
,
77
]
■
{T = \left[ 59, 77 \right] \; \blacksquare}
T
=
[
59
,
77
]
■
(ii)
5400
≤
S
n
≤
6300
5400 \leq S_n \leq 6300
5400
≤
S
n
≤
6300
5400
≤
a
(
r
n
−
1
)
r
−
1
≤
6300
5400
≤
t
(
1.0
2
50
−
1
)
1.02
−
1
≤
6300
\begin{alignat*}{2} 5400 &\leq \frac{a\left(r^{n}-1\right)}{r-1} &\leq 6300 \\ 5400 &\leq \frac{t\Big( 1.02^{50} - 1 \Big)}{1.02-1} &\leq 6300 \\ \end{alignat*}
5400
5400
≤
r
−
1
a
(
r
n
−
1
)
≤
1.02
−
1
t
(
1.0
2
50
−
1
)
≤
6300
≤
6300
63.845
≤
t
≤
74.486
63.845 \leq t \leq 74.486
63.845
≤
t
≤
74.486
Set of values of
t
=
[
63.9
,
74.4
]
■
{t = \left[ 63.9, 74.4 \right] \; \blacksquare}
t
=
[
63.9
,
74.4
]
■
(iii)
Let
T
=
59
{T=59}
T
=
59
and
t
=
63.845
{t=63.845}
t
=
63.845
For athlete
A
,
{A,}
A
,
u
50
=
a
+
(
n
−
1
)
d
=
59
+
(
50
−
1
)
2
=
157
\begin{align*} u_{50} &= a + \left( n - 1 \right) d \\ &= 59 + \left( 50 - 1 \right) 2 \\ &= 157 \end{align*}
u
50
=
a
+
(
n
−
1
)
d
=
59
+
(
50
−
1
)
2
=
157
For athlete
B
,
{B,}
B
,
u
50
=
a
r
n
−
1
=
74.486
(
1.02
)
50
−
1
=
168.47
\begin{align*} u_{50} &= ar^{n-1} \\ &= 74.486\left(1.02\right)^{50-1} \\ &= 168.47 \end{align*}
u
50
=
a
r
n
−
1
=
74.486
(
1.02
)
50
−
1
=
168.47
Difference in athletes' times
=
168.47
−
157
=
11
s (nearest second)
■
\begin{align*} &= 168.47 - 157 \\ &= 11 \textrm{ s (nearest second)} \; \blacksquare \end{align*}
=
168.47
−
157
=
11
s (nearest second)
■
Back to top ▲