Math Repository
about
topic
al
year
ly
Yearly
2015
P2 Q9
Topical
Probability
15 P2 Q9
2015 H2 Mathematics Paper 2 Question 9
Probability
Answers
(i)
0.4
{0.4}
0.4
(ii)
0.185
{0.185}
0.185
(iii)
Greatest
P
(
A
′
∩
B
′
∩
C
′
)
=
0.33
{\textrm{P}\left(A' \cap B' \cap C'\right) = 0.33}
P
(
A
′
∩
B
′
∩
C
′
)
=
0.33
Least
P
(
A
′
∩
B
′
∩
C
′
)
=
0.165
{\textrm{P}\left(A' \cap B' \cap C'\right) = 0.165}
P
(
A
′
∩
B
′
∩
C
′
)
=
0.165
Full solutions
(i)
Since
A
{A}
A
and
B
{B}
B
are independent,
P
(
B
∣
A
)
=
P
(
B
)
=
0.4
■
\begin{align*} \textrm{P}\left(B \mid A\right) &= \textrm{P}\left(B\right) \\ &= 0.4 \; \blacksquare \end{align*}
P
(
B
∣
A
)
=
P
(
B
)
=
0.4
■
(ii)
Since
A
{A}
A
and
B
{B}
B
are independent,
P
(
A
∩
B
)
=
P
(
A
)
⋅
P
(
B
)
=
0.45
×
0.4
=
0.18
\begin{align*} \textrm{P}\left(A \cap B\right) &= \textrm{P}\left(A\right) \cdot \textrm{P}\left(B\right) \\ &= 0.45 \times 0.4 \\ &= 0.18 \end{align*}
P
(
A
∩
B
)
=
P
(
A
)
⋅
P
(
B
)
=
0.45
×
0.4
=
0.18
Since
A
{A}
A
and
C
{C}
C
are independent,
P
(
A
∩
C
)
=
P
(
A
)
⋅
P
(
C
)
=
0.45
×
0.3
=
0.135
\begin{align*} \textrm{P}\left(A \cap C\right) &= \textrm{P}\left(A\right) \cdot \textrm{P}\left(C\right) \\ &= 0.45 \times 0.3 \\ &= 0.135 \end{align*}
P
(
A
∩
C
)
=
P
(
A
)
⋅
P
(
C
)
=
0.45
×
0.3
=
0.135
Given
B
{B}
B
and
C
{C}
C
are independent,
P
(
B
∩
C
)
=
P
(
B
)
⋅
P
(
C
)
=
0.4
×
0.3
=
0.12
\begin{align*} \textrm{P}\left(B \cap C\right) &= \textrm{P}\left(B\right) \cdot \textrm{P}\left(C\right) \\ &= 0.4 \times 0.3 \\ &= 0.12 \end{align*}
P
(
B
∩
C
)
=
P
(
B
)
⋅
P
(
C
)
=
0.4
×
0.3
=
0.12
From the Venn diagram,
P
(
A
′
∩
B
′
∩
C
′
)
=
0.185
■
\textrm{P}\left(A' \cap B' \cap C'\right) = 0.185 \; \blacksquare
P
(
A
′
∩
B
′
∩
C
′
)
=
0.185
■
(iii)
Let
x
{x}
x
denote
P
(
B
∩
C
∩
A
′
)
{\textrm{P}\left(B \cap C \cap A'\right)}
P
(
B
∩
C
∩
A
′
)
From the Venn diagram, since all probabilities are between
0
{0}
0
and
1
,
{1,}
1
,
0
≤
x
≤
0.165
0 \leq x \leq 0.165
0
≤
x
≤
0.165
Since P
(
A
′
∩
B
′
∩
C
′
)
=
0.165
+
x
,
\textrm{Since } \textrm{P}\left(A' \cap B' \cap C'\right) = 0.165+x,
Since
P
(
A
′
∩
B
′
∩
C
′
)
=
0.165
+
x
,
0.165
≤
P
(
A
′
∩
B
′
∩
C
′
)
≤
0.33
0.165 \leq \textrm{P}\left(A' \cap B' \cap C'\right) \leq 0.33
0.165
≤
P
(
A
′
∩
B
′
∩
C
′
)
≤
0.33
Greatest possible P
(
A
′
∩
B
′
∩
C
′
)
=
0.33
■
Least possible P
(
A
′
∩
B
′
∩
C
′
)
=
0.165
■
\begin{align*} & \textrm{Greatest possible } \textrm{P}\left(A' \cap B' \cap C'\right) \\ &\quad= 0.33 \; \blacksquare \\ & \textrm{Least possible } \textrm{P}\left(A' \cap B' \cap C'\right) \\ &\quad= 0.165 \; \blacksquare \end{align*}
Greatest possible
P
(
A
′
∩
B
′
∩
C
′
)
=
0.33
■
Least possible
P
(
A
′
∩
B
′
∩
C
′
)
=
0.165
■
Back to top ▲