2015 H2 Mathematics Paper 2 Question 10

Linear Correlation and Regression

Answers

(iia)
0.9807{-0.9807}
(iib)
0.9748{-0.9748}
(iic)
0.9986{-0.9986}
P=34.80.147h{P = 34.8-0.147\sqrt{h}}
P=34.80.266H{P = 34.8-0.266\sqrt{H}}

Full solutions

(i)

(iia)
Product moment correlation coefficient between h{h} and P:{P:}
r1=0.9807 (4 dp)  r_1 = -0.9807 \textrm{ (4 dp)} \; \blacksquare
(iib)
Product moment correlation coefficient between lnh{\ln h} and P:{P:}
r2=0.9748 (4 dp)  r_2 = -0.9748 \textrm{ (4 dp)} \; \blacksquare
(iic)
Product moment correlation coefficient between h{\sqrt{h}} and P:{P:}
r3=0.9986 (4 dp)  r_3 = -0.9986 \textrm{ (4 dp)} \; \blacksquare

(iii)

Equation of least square regression line of P{P} on h:{\sqrt{h}:}
P=34.7890.14687hP=34.80.147h (3 sf)  \begin{align*} & P = 34.789-0.14687\sqrt{h} \\ & P = 34.8-0.147\sqrt{h} \textrm{ (3 sf)} \; \blacksquare \end{align*}

(iv)

Let H{H} denote the height above sea-level, measured in metres
1 metre=3.28 feetH metre=3.28H feeth=3.28H\begin{align*} 1 \textrm{ metre} &= 3.28 \textrm{ feet} \\ H \textrm{ metre} &= 3.28H \textrm{ feet} \\ h &= 3.28H \end{align*}
P=34.7890.14687hP=34.7890.146873.28HP=34.80.266H (3 sf)  \begin{align*} & P = 34.789-0.14687\sqrt{h} \\ & P = 34.789 - 0.14687 \sqrt{3.28H} \\ & P = 34.8-0.266\sqrt{H} \textrm{ (3 sf)} \; \blacksquare \end{align*}