2015 H2 Mathematics Paper 1 Question 7

Vectors I: Basics, Dot and Cross Products

Answers

OC=35a{\overrightarrow{OC} = \frac{3}{5} \mathbf{a}}
OD=511b{\overrightarrow{OD} = \frac{5}{11} \mathbf{b}}
lBC:r=35λa+(1λ)b{l_{BC}: \mathbf{r} = \frac{3}{5}\lambda\mathbf{a} + (1-\lambda)\mathbf{b}}
lAD:r=(1μ)a+511μb{l_{AD}: \mathbf{r} = (1-\mu)\mathbf{a} + \frac{5}{11}\mu\mathbf{b}}
OE=920a+14b{\overrightarrow{OE} = \frac{9}{20}\mathbf{a}+\frac{1}{4}\mathbf{b}}
AE:ED=11:9{AE:ED = 11:9}

Full solutions

(i)

OC=35a  {\overrightarrow{OC} = \frac{3}{5} \mathbf{a} \; \blacksquare}
OD=511b  {\overrightarrow{OD} = \frac{5}{11} \mathbf{b} \; \blacksquare}

(ii)

BC=OCOB=35ab\begin{align*} \overrightarrow{BC} &= \overrightarrow{OC} - \overrightarrow{OB} \\ &= \frac{3}{5} \mathbf{a} - \mathbf{b} \end{align*}
Equation of line BC:{BC:}
r=OB+λBC,  λR=b+λ(35ab)lBC:r=35λa+(1λ)b  \begin{align*} \mathbf{r} &= \overrightarrow{OB} + \lambda \overrightarrow{BC}, \; \lambda \in \mathbb{R} \\ &= \mathbf{b} + \lambda (\frac{3}{5} \mathbf{a} - \mathbf{b}) \\ l_{BC}: \mathbf{r} &= \frac{3}{5}\lambda\mathbf{a} + (1-\lambda)\mathbf{b} \; \blacksquare \end{align*}
AD=ODOA=511ba\begin{align*} \overrightarrow{AD} &= \overrightarrow{OD} - \overrightarrow{OA} \\ &= \frac{5}{11} \mathbf{b} - \mathbf{a} \end{align*}
Equation of line AD:{AD:}
r=OA+μAD,  μR=a+μ(511ba)lAD:r=(1μ)a+511μb  \begin{align*} \mathbf{r} &= \overrightarrow{OA} + \mu \overrightarrow{AD}, \; \mu \in \mathbb{R} \\ &= \mathbf{a} + \mu (\frac{5}{11} \mathbf{b} - \mathbf{a}) \\ l_{AD}: \mathbf{r} &= (1-\mu)\mathbf{a} + \frac{5}{11}\mu\mathbf{b} \; \blacksquare \end{align*}

(iii)

When BC{BC} and AD{AD} meet,
35λa+(1λ)b=(1μ)a+511μb\frac{3}{5}\lambda\mathbf{a} + (1-\lambda)\mathbf{b} = (1-\mu)\mathbf{a} + \frac{5}{11}\mu\mathbf{b}
Comparing,
35λ=1μ1λ=511μ\begin{align} && \quad \frac{3}{5}\lambda &= 1-\mu \\ && \quad 1-\lambda &= \frac{5}{11}\mu \end{align}
Solving with a GC,
λ=34,μ=1120\lambda = \frac{3}{4}, \mu = \frac{11}{20}
OE=35(34)a+(134)b=920a+14b  \begin{align*} \overrightarrow{OE} &= \frac{3}{5}\left(\frac{3}{4}\right)\mathbf{a} + \left(1-\frac{3}{4}\right)\mathbf{b} \\ &= \frac{9}{20}\mathbf{a}+\frac{1}{4}\mathbf{b} \; \blacksquare \end{align*}
AE=OEOA=920a+14ba=1120a+14b=120(11a+5b)\begin{align*} \overrightarrow{AE} &= \overrightarrow{OE} - \overrightarrow{OA} \\ &= \frac{9}{20}\mathbf{a}+\frac{1}{4}\mathbf{b} - \mathbf{a} \\ &= - \frac{11}{20}\mathbf{a} + \frac{1}{4}\mathbf{b} \\ &= \frac{1}{20}\left(- 11\mathbf{a}+5\mathbf{b}\right) \end{align*}
ED=ODOE=511b(920a+14b)=920a+944b=9220(11a+5b)\begin{align*} \overrightarrow{ED} &= \overrightarrow{OD} - \overrightarrow{OE} \\ &= \frac{5}{11} \mathbf{b} - \left(\frac{9}{20}\mathbf{a}+\frac{1}{4}\mathbf{b}\right) \\ &= - \frac{9}{20}\mathbf{a} + \frac{9}{44}\mathbf{b} \\ &= \frac{9}{220}\left(- 11\mathbf{a}+5\mathbf{b}\right) \end{align*}
AEED=120÷9220=119\begin{align*} \frac{AE}{ED} &= \frac{1}{20} \div \frac{9}{220}\\ &= \frac{11}{9} \end{align*}
Hence AE:ED=11:9  {AE:ED = 11:9 \; \blacksquare}