2015 H2 Mathematics Paper 2 Question 3

Functions

Answers

(ai)
All horizontal lines y=k,{y=k, } kR{k \in \mathbb{R}} cuts the graph of y=f(x){y=f(x)} at most once. Hence f{f} is a one-one function and has an inverse
(aii)
f1(x)=x1x{f^{-1}(x) = \sqrt{\frac{x-1}{x}}}
Df1=(,0){D_{f^{-1}} = (-\infty, 0)}
(,1123][1+123,){\left(-\infty, 1 - \frac{1}{2} \sqrt{3} \right]}\allowbreak {\cup \left[ 1 + \frac{1}{2} \sqrt{3}, \infty \right)}

Full solutions

(ai)
All horizontal lines y=k,{y=k, } kR{k \in \mathbb{R}} cuts the graph of y=f(x){y=f(x)} at most once. Hence f{f} is a one-one function and has an inverse {\blacksquare}
(aii)
y=11x2yx2y=1x2y=y1x=±y1y\begin{gather*} y = \frac{1}{1-x^2} \\ y - x^2y = 1 \\ x^2 y = y-1 \\ x = \pm \sqrt{\frac{y-1}{y}} \end{gather*}
Since x>1,{x>1,}
x=y1yf1(x)=x1x  \begin{align*} x &= \sqrt{\frac{y-1}{y}} \\ f^{-1}(x) &= \sqrt{\frac{x-1}{x}} \; \blacksquare \end{align*}
Df1=Rf=(,0)  \begin{align*} D_{f^{-1}} &= R_f \\ &= (-\infty, 0) \; \blacksquare \end{align*}

(b)

y=2+x1x2yyx2=2+xyx2+x+2y=0\begin{gather*} y = \frac{2+x}{1-x^2} \\ y - yx^2 = 2 + x \\ yx^2 + x + 2-y = 0 \end{gather*}
For the range of g,{g,}
b24ac0124(y)(2y)018y+4y20\begin{gather*} b^2 - 4ac \geq 0 \\ 1^2 - 4(y)(2-y) \geq 0 \\ 1 - 8y + 4y^2 \geq 0 \\ \end{gather*}
Roots of 4y28y+1=0:{4y^2-8y+1=0:}
y=8±824(4)2(4)=8±488=8±438=1±123\begin{align*} y &= \frac{8\pm \sqrt{8^2-4(4)}}{2(4)} \\ &= \frac{8 \pm \sqrt{48}}{8} \\ &= \frac{8 \pm 4 \sqrt{3}}{8} \\ &= 1 \pm \frac{1}{2} \sqrt{3} \end{align*}
x1123   or   x1+123x \leq 1 - \frac{1}{2} \sqrt{3} \; \textrm{ or } \; x \geq 1 + \frac{1}{2} \sqrt{3}
Rg=(,1123][1+123,)  R_g = \left(-\infty, 1 - \frac{1}{2} \sqrt{3} \right] \cup \left[ 1 + \frac{1}{2} \sqrt{3}, \infty \right) \; \blacksquare