Math Repository
about
topic
al
year
ly
Yearly
2015
P2 Q3
Topical
Functions
15 P2 Q3
2015 H2 Mathematics Paper 2 Question 3
Functions
Answers
(ai)
All horizontal lines
y
=
k
,
{y=k, }
y
=
k
,
k
∈
R
{k \in \mathbb{R}}
k
∈
R
cuts the graph of
y
=
f
(
x
)
{y=f(x)}
y
=
f
(
x
)
at most once. Hence
f
{f}
f
is a one-one function and has an inverse
(aii)
f
−
1
(
x
)
=
x
−
1
x
{f^{-1}(x) = \sqrt{\frac{x-1}{x}}}
f
−
1
(
x
)
=
x
x
−
1
D
f
−
1
=
(
−
∞
,
0
)
{D_{f^{-1}} = (-\infty, 0)}
D
f
−
1
=
(
−
∞
,
0
)
(b)
(
−
∞
,
1
−
1
2
3
]
∪
[
1
+
1
2
3
,
∞
)
{\left(-\infty, 1 - \frac{1}{2} \sqrt{3} \right]}\allowbreak {\cup \left[ 1 + \frac{1}{2} \sqrt{3}, \infty \right)}
(
−
∞
,
1
−
2
1
3
]
∪
[
1
+
2
1
3
,
∞
)
Full solutions
(ai)
All horizontal lines
y
=
k
,
{y=k, }
y
=
k
,
k
∈
R
{k \in \mathbb{R}}
k
∈
R
cuts the graph of
y
=
f
(
x
)
{y=f(x)}
y
=
f
(
x
)
at most once. Hence
f
{f}
f
is a one-one function and has an inverse
■
{\blacksquare}
■
(aii)
y
=
1
1
−
x
2
y
−
x
2
y
=
1
x
2
y
=
y
−
1
x
=
±
y
−
1
y
\begin{gather*} y = \frac{1}{1-x^2} \\ y - x^2y = 1 \\ x^2 y = y-1 \\ x = \pm \sqrt{\frac{y-1}{y}} \end{gather*}
y
=
1
−
x
2
1
y
−
x
2
y
=
1
x
2
y
=
y
−
1
x
=
±
y
y
−
1
Since
x
>
1
,
{x>1,}
x
>
1
,
x
=
y
−
1
y
f
−
1
(
x
)
=
x
−
1
x
■
\begin{align*} x &= \sqrt{\frac{y-1}{y}} \\ f^{-1}(x) &= \sqrt{\frac{x-1}{x}} \; \blacksquare \end{align*}
x
f
−
1
(
x
)
=
y
y
−
1
=
x
x
−
1
■
D
f
−
1
=
R
f
=
(
−
∞
,
0
)
■
\begin{align*} D_{f^{-1}} &= R_f \\ &= (-\infty, 0) \; \blacksquare \end{align*}
D
f
−
1
=
R
f
=
(
−
∞
,
0
)
■
(b)
y
=
2
+
x
1
−
x
2
y
−
y
x
2
=
2
+
x
y
x
2
+
x
+
2
−
y
=
0
\begin{gather*} y = \frac{2+x}{1-x^2} \\ y - yx^2 = 2 + x \\ yx^2 + x + 2-y = 0 \end{gather*}
y
=
1
−
x
2
2
+
x
y
−
y
x
2
=
2
+
x
y
x
2
+
x
+
2
−
y
=
0
For the range of
g
,
{g,}
g
,
b
2
−
4
a
c
≥
0
1
2
−
4
(
y
)
(
2
−
y
)
≥
0
1
−
8
y
+
4
y
2
≥
0
\begin{gather*} b^2 - 4ac \geq 0 \\ 1^2 - 4(y)(2-y) \geq 0 \\ 1 - 8y + 4y^2 \geq 0 \\ \end{gather*}
b
2
−
4
a
c
≥
0
1
2
−
4
(
y
)
(
2
−
y
)
≥
0
1
−
8
y
+
4
y
2
≥
0
Roots of
4
y
2
−
8
y
+
1
=
0
:
{4y^2-8y+1=0:}
4
y
2
−
8
y
+
1
=
0
:
y
=
8
±
8
2
−
4
(
4
)
2
(
4
)
=
8
±
48
8
=
8
±
4
3
8
=
1
±
1
2
3
\begin{align*} y &= \frac{8\pm \sqrt{8^2-4(4)}}{2(4)} \\ &= \frac{8 \pm \sqrt{48}}{8} \\ &= \frac{8 \pm 4 \sqrt{3}}{8} \\ &= 1 \pm \frac{1}{2} \sqrt{3} \end{align*}
y
=
2
(
4
)
8
±
8
2
−
4
(
4
)
=
8
8
±
48
=
8
8
±
4
3
=
1
±
2
1
3
x
≤
1
−
1
2
3
or
x
≥
1
+
1
2
3
x \leq 1 - \frac{1}{2} \sqrt{3} \; \textrm{ or } \; x \geq 1 + \frac{1}{2} \sqrt{3}
x
≤
1
−
2
1
3
or
x
≥
1
+
2
1
3
R
g
=
(
−
∞
,
1
−
1
2
3
]
∪
[
1
+
1
2
3
,
∞
)
■
R_g = \left(-\infty, 1 - \frac{1}{2} \sqrt{3} \right] \cup \left[ 1 + \frac{1}{2} \sqrt{3}, \infty \right) \; \blacksquare
R
g
=
(
−
∞
,
1
−
2
1
3
]
∪
[
1
+
2
1
3
,
∞
)
■
Back to top ▲