Math Repository
about
topic
al
year
ly
Yearly
2015
P1 Q1
Topical
Equations
15 P1 Q1
2015 H2 Mathematics Paper 1 Question 1
Equations and Inequalities
Answers
(i)
a
=
−
3.593
,
{a=-3.593,\;}
a
=
−
3.593
,
b
=
−
5.187
,
{b=-5.187,\;}
b
=
−
5.187
,
c
=
7.303
{c=7.303}
c
=
7.303
(ii)
x
=
−
0.589
{x= -0.589}
x
=
−
0.589
(iii)
y
=
−
5.187
x
+
7.303
{y=-5.187x + 7.303}
y
=
−
5.187
x
+
7.303
Full solutions
(i)
C
{C}
C
passes through
(
1.6
,
−
2.4
)
{(1.6, -2.4)}
(
1.6
,
−
2.4
)
and
(
−
0.7
,
3.6
)
:
{(-0.7, 3.6):}
(
−
0.7
,
3.6
)
:
1
1.
6
2
a
+
1.6
b
+
c
=
−
2.4
1
(
−
0.7
)
2
a
−
0.7
b
+
c
=
3.6
\begin{align} && \quad \frac{1}{1.6^2} a + 1.6 b + c &= -2.4 \\ && \quad \frac{1}{(-0.7)^2} a -0.7 b + c &= 3.6 \\ \end{align}
1.
6
2
1
a
+
1.6
b
+
c
(
−
0.7
)
2
1
a
−
0.7
b
+
c
=
−
2.4
=
3.6
d
y
d
x
=
−
2
a
x
3
+
b
\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-2a}{x^3} + b
d
x
d
y
=
x
3
−
2
a
+
b
Gradient of
C
{C}
C
is
2
{2}
2
where
x
=
1
:
{x=1:}
x
=
1
:
−
2
a
+
b
=
2
\begin{align} && \quad -2a + b &= 2 \\ \end{align}
−
2
a
+
b
=
2
Solving
(
1
)
,
(
2
)
{(1), (2)}
(
1
)
,
(
2
)
and
(
3
)
{(3)}
(
3
)
with a GC,
a
=
−
3.593
(3 dp)
■
b
=
−
5.187
(3 dp)
■
c
=
7.303
(3 dp)
■
\begin{align*} a&=-3.593 \textrm{ (3 dp)} \; \blacksquare \\ b&=-5.187 \textrm{ (3 dp)} \; \blacksquare \\ c&=7.303 \textrm{ (3 dp)} \; \blacksquare \end{align*}
a
b
c
=
−
3.593
(3 dp)
■
=
−
5.187
(3 dp)
■
=
7.303
(3 dp)
■
(ii)
Using a GC, when
C
{C}
C
crosses the
x
-
{x\textrm{-}}
x
-
axis,
x
=
−
0.589
(3 dp)
■
x=-0.589 \textrm{ (3 dp)} \; \blacksquare
x
=
−
0.589
(3 dp)
■
(iii)
Other (oblique) asymptote of
C
:
{C:}
C
:
y
=
b
x
+
c
y
=
−
5.187
x
+
7.303
■
\begin{gather*}y=bx+c\\y=-5.187x + 7.303 \; \blacksquare\end{gather*}
y
=
b
x
+
c
y
=
−
5.187
x
+
7.303
■
Back to top ▲