Math Repository
about
topic
al
year
ly
Yearly
2007
P1 Q6
Topical
Vectors I
07 P1 Q6
2007 H2 Mathematics Paper 1 Question 6
Vectors I: Basics, Dot and Cross Products
Answers
(ii)
O
M
→
=
1
3
(
4
2
5
)
{\overrightarrow{OM}=\frac{1}{3} \begin{pmatrix} 4 \\ 2 \\ 5 \end{pmatrix}}
OM
=
3
1
4
2
5
(iii)
Area of
△
O
A
C
=
35
units
2
{\triangle OAC} \allowbreak {= \sqrt{35} \textrm{ units}^2}
△
O
A
C
=
35
units
2
Full solutions
(i)
O
A
→
⋅
O
B
→
=
(
1
−
1
2
)
⋅
(
2
4
1
)
=
2
−
4
+
2
=
0
\begin{align*} & \overrightarrow{OA} \cdot \overrightarrow{OB} \\ &= \begin{pmatrix} 1 \\ - 1 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 4 \\ 1 \end{pmatrix} \\ &= 2 - 4 + 2 \\ &= 0 \end{align*}
O
A
⋅
OB
=
1
−
1
2
⋅
2
4
1
=
2
−
4
+
2
=
0
Hence
O
A
{OA}
O
A
is perpendicular to
O
B
■
{OB \; \blacksquare}
OB
■
(ii)
By Ratio Theorem,
O
M
→
=
2
O
A
→
+
O
B
→
3
=
2
(
1
−
1
2
)
+
(
2
4
1
)
3
=
1
3
(
4
2
5
)
■
\begin{align*} \overrightarrow{OM} &= \frac{2\overrightarrow{OA}+\overrightarrow{OB}}{3} \\ &= \frac{2\begin{pmatrix} 1 \\ - 1 \\ 2 \end{pmatrix}+\begin{pmatrix} 2 \\ 4 \\ 1 \end{pmatrix}}{3} \\ &= \frac{1}{3} \begin{pmatrix} 4 \\ 2 \\ 5 \end{pmatrix} \; \blacksquare \end{align*}
OM
=
3
2
O
A
+
OB
=
3
2
1
−
1
2
+
2
4
1
=
3
1
4
2
5
■
(iii)
Area of
△
O
A
C
=
1
2
∣
O
A
→
×
O
C
→
∣
=
1
2
∣
(
1
−
1
2
)
×
(
−
4
2
2
)
∣
=
1
2
∣
(
−
6
−
10
−
2
)
∣
=
1
2
36
+
100
+
4
=
1
2
140
=
35
units
2
■
\begin{align*} & \textrm{Area of } \triangle OAC \\ &= \frac{1}{2} \left| \overrightarrow{OA} \times \overrightarrow{OC} \right| \\ &= \frac{1}{2} \left|\begin{pmatrix} 1 \\ - 1 \\ 2 \end{pmatrix} \times \begin{pmatrix} - 4 \\ 2 \\ 2 \end{pmatrix}\right| \\ &= \frac{1}{2} \left|\begin{pmatrix} - 6 \\ - 10 \\ - 2 \end{pmatrix} \right| \\ &= \frac{1}{2} \sqrt{36 + 100 + 4} \\ &= \frac{1}{2} \sqrt{140} \\ &= \sqrt{35} \textrm{ units}^2 \; \blacksquare \end{align*}
Area of
△
O
A
C
=
2
1
O
A
×
OC
=
2
1
1
−
1
2
×
−
4
2
2
=
2
1
−
6
−
10
−
2
=
2
1
36
+
100
+
4
=
2
1
140
=
35
units
2
■
Back to top ▲